Cargando…
A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome
De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal domina...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462073/ https://www.ncbi.nlm.nih.gov/pubmed/32817165 http://dx.doi.org/10.1101/gr.249599.119 |
_version_ | 1783576849620664320 |
---|---|
author | Gao, Fan Pan, Xuedong Dodd-Eaton, Elissa B. Recio, Carlos Vera Montierth, Matthew D. Bojadzieva, Jasmina Mai, Phuong L. Zelley, Kristin Johnson, Valen E. Braun, Danielle Nichols, Kim E. Garber, Judy E. Savage, Sharon A. Strong, Louise C. Wang, Wenyi |
author_facet | Gao, Fan Pan, Xuedong Dodd-Eaton, Elissa B. Recio, Carlos Vera Montierth, Matthew D. Bojadzieva, Jasmina Mai, Phuong L. Zelley, Kristin Johnson, Valen E. Braun, Danielle Nichols, Kim E. Garber, Judy E. Savage, Sharon A. Strong, Louise C. Wang, Wenyi |
author_sort | Gao, Fan |
collection | PubMed |
description | De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20–35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53. |
format | Online Article Text |
id | pubmed-7462073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-74620732020-09-11 A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome Gao, Fan Pan, Xuedong Dodd-Eaton, Elissa B. Recio, Carlos Vera Montierth, Matthew D. Bojadzieva, Jasmina Mai, Phuong L. Zelley, Kristin Johnson, Valen E. Braun, Danielle Nichols, Kim E. Garber, Judy E. Savage, Sharon A. Strong, Louise C. Wang, Wenyi Genome Res Method De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20–35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53. Cold Spring Harbor Laboratory Press 2020-08 /pmc/articles/PMC7462073/ /pubmed/32817165 http://dx.doi.org/10.1101/gr.249599.119 Text en © 2020 Gao et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Method Gao, Fan Pan, Xuedong Dodd-Eaton, Elissa B. Recio, Carlos Vera Montierth, Matthew D. Bojadzieva, Jasmina Mai, Phuong L. Zelley, Kristin Johnson, Valen E. Braun, Danielle Nichols, Kim E. Garber, Judy E. Savage, Sharon A. Strong, Louise C. Wang, Wenyi A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title | A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title_full | A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title_fullStr | A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title_full_unstemmed | A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title_short | A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome |
title_sort | pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with li-fraumeni syndrome |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462073/ https://www.ncbi.nlm.nih.gov/pubmed/32817165 http://dx.doi.org/10.1101/gr.249599.119 |
work_keys_str_mv | AT gaofan apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT panxuedong apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT doddeatonelissab apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT reciocarlosvera apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT montierthmatthewd apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT bojadzievajasmina apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT maiphuongl apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT zelleykristin apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT johnsonvalene apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT braundanielle apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT nicholskime apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT garberjudye apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT savagesharona apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT stronglouisec apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT wangwenyi apedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT gaofan pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT panxuedong pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT doddeatonelissab pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT reciocarlosvera pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT montierthmatthewd pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT bojadzievajasmina pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT maiphuongl pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT zelleykristin pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT johnsonvalene pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT braundanielle pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT nicholskime pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT garberjudye pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT savagesharona pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT stronglouisec pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome AT wangwenyi pedigreebasedpredictionmodelidentifiescarriersofdeleteriousdenovomutationsinfamilieswithlifraumenisyndrome |