Cargando…
Autonomous image segmentation and identification of anatomical landmarks from lumbar spine intraoperative computed tomography scans using machine learning: A validation study
PURPOSE: Machine-learning algorithms are a subset of artificial intelligence that have proven to enhance analytics in medicine across various platforms. Spine surgery has the potential to benefit from improved hardware placement utilizing algorithms that autonomously and accurately measure pedicle a...
Autores principales: | Siemionow, Krzyzstof, Luciano, Cristian, Forsthoefel, Craig, Aydogmus, Suavi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462134/ https://www.ncbi.nlm.nih.gov/pubmed/32904970 http://dx.doi.org/10.4103/jcvjs.JCVJS_37_20 |
Ejemplares similares
-
Autonomous lumbar spine pedicle screw planning using machine learning: A validation study
por: Siemionow, Kris B., et al.
Publicado: (2021) -
Role of Anatomical Landmarks in Identifying Normal and Transitional Vertebra in Lumbar Spine Magnetic Resonance Imaging
por: Jagannathan, Devimeenal, et al.
Publicado: (2017) -
Intraoperative Anatomical Findings in Pediatric Clear Cell Meningioma of the Lumbar Spine: Case Report and Literature Review
por: TSUCHIYA, Takahiro, et al.
Publicado: (2021) -
Ideal Anatomical Landmark Points for Thoracic Esophagus Segmentation in the Chinese Population
por: Lu, Di, et al.
Publicado: (2021) -
Reliability Analysis of Vertebral Landmark Labelling on Lumbar Spine X-ray Images
por: Jang, Jun-Su, et al.
Publicado: (2023)