Cargando…

STAT3-mediated Apoptotic-enhancing Function of Sclareol Against Breast Cancer Cells and Cell Sensitization to Cyclophosphamide

Sclareol is an organic compound with potential anti-tumor effects against various cancer types. However, its precise molecular mechanism in the suppression of tumor growth has not been fully elucidated. In the present study, the anti-proliferative and apoptosis-inducing effects of sclareol with cycl...

Descripción completa

Detalles Bibliográficos
Autores principales: Afshari, Havva, Nourbakhsh, Mitra, Salehi, Niloufar, Mahboubi-Rabbani, Mohammad, Zarghi, Afshin, Noori, Shokoofe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462487/
https://www.ncbi.nlm.nih.gov/pubmed/32922496
http://dx.doi.org/10.22037/ijpr.2020.112587.13843
Descripción
Sumario:Sclareol is an organic compound with potential anti-tumor effects against various cancer types. However, its precise molecular mechanism in the suppression of tumor growth has not been fully elucidated. In the present study, the anti-proliferative and apoptosis-inducing effects of sclareol with cyclophosphamide were investigated in breast cancer cells and the involvement of the JAK/STAT pathway was evaluated. For this purpose, MCF-7 breast cancer cells were cultured and treated with various concentrations of sclareol to determine its IC(50). Cell viability was measured by MTT assay and apoptosis was assessed by flow cytometric analysis of annexin V binding. Gene and protein expression were examined by real-time PCR and Western blotting, respectively. The activity of caspase enzymes was also measured. The results showed that sclareol significantly reduced cell viability and triggered cell death and its co-administration with cyclophosphamide enhanced its anti-cancer properties. Additionally, sclareol up-regulated the expression of p53 and BAX and reduced the expression of Bcl-2. Docking studies indicated an interaction between sclareol and STAT3 which was proved by attenuation of STAT3 phosphorylation after treatment of the cells with sclareol. Sclareol was also capable of suppressing the function of IL-6 in modulating the expression of apoptosis-associated genes. Altogether these data suggest the potential of sclareol as an anti-cancer agent and demonstrate that a combination of sclareol with cyclophosphamide might serve as an effective chemotherapeutic approach resulting in improvements in the treatment of breast cancer.