Cargando…

Noncompetitive Inhibition of Bovine Liver Catalase by Lawsone: Kinetics, Binding Mechanism and in silico Modeling Approaches

Lawsone (2-hydroxy-1,4-naphtoquinone; LAW), as a naphthoquinone derivative, is the biologically active component of Henna leaves. In this study, the structural and functional effects of LAW on bovine liver catalase (BLC), has been studied utilizing ultraviolet-visible (UV-vis) absorption, fluorescen...

Descripción completa

Detalles Bibliográficos
Autores principales: khataee, Simin, Dehghan, Gholamreza, Rashtbari, Samaneh, Dastmalchi, Siavash, Iranshahi, Mehrdad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shaheed Beheshti University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462507/
https://www.ncbi.nlm.nih.gov/pubmed/32922495
http://dx.doi.org/10.22037/ijpr.2019.111600.13255
Descripción
Sumario:Lawsone (2-hydroxy-1,4-naphtoquinone; LAW), as a naphthoquinone derivative, is the biologically active component of Henna leaves. In this study, the structural and functional effects of LAW on bovine liver catalase (BLC), has been studied utilizing ultraviolet-visible (UV-vis) absorption, fluorescence, and ATR-FTIR spectroscopic techniques, and molecular docking approach. In-vitro kinetic study showed that by adding gradual concentrations of LAW, catalase activity was significantly decreased through noncompetitive inhibition mechanism. UV–vis and ATR-FTIR spectroscopic results illustrated that additional concentration of LAW lead to significant change in secondary structure of the enzyme.The fluorescence spectroscopic results at different temperatures indicated that LAW quenches the intrinsic fluorescence of BLC by dynamic mechanismand there is just one binding site for LAW on BCL. Changing the micro-environment nearby two aromatic residues (tryptophan (Trp) and tyrosine (Tyr)) were resulted from synchronous fluorescence. The thermodynamic parameters were implied that the hydrophobic bindings have a significant impress in the organization of the LAW-catalase complex. Molecular docking data in agreement with experimental results, confirmed that hydrophobic interactions are dominant. Inhibition of enzyme activity by LAW, showed that along withits helpful effects as ananti-oxidant compounds, the side effects of LAW should not be overlooked.