Cargando…

Glaucoma Home Monitoring Using a Tablet-Based Visual Field Test (Eyecatcher): An Assessment of Accuracy and Adherence Over 6 Months

PURPOSE: To assess accuracy and adherence of visual field (VF) home monitoring in a pilot sample of patients with glaucoma. DESIGN: Prospective longitudinal feasibility and reliability study. METHODS: Twenty adults (median 71 years) with an established diagnosis of glaucoma were issued a tablet peri...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Pete R., Campbell, Peter, Callaghan, Tamsin, Jones, Lee, Asfaw, Daniel S., Edgar, David F., Crabb, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462567/
https://www.ncbi.nlm.nih.gov/pubmed/32882222
http://dx.doi.org/10.1016/j.ajo.2020.08.039
Descripción
Sumario:PURPOSE: To assess accuracy and adherence of visual field (VF) home monitoring in a pilot sample of patients with glaucoma. DESIGN: Prospective longitudinal feasibility and reliability study. METHODS: Twenty adults (median 71 years) with an established diagnosis of glaucoma were issued a tablet perimeter (Eyecatcher) and were asked to perform 1 VF home assessment per eye, per month, for 6 months (12 tests total). Before and after home monitoring, 2 VF assessments were performed in clinic using standard automated perimetry (4 tests total, per eye). RESULTS: All 20 participants could perform monthly home monitoring, though 1 participant stopped after 4 months (adherence: 98% of tests). There was good concordance between VFs measured at home and in the clinic (r = 0.94, P < .001). In 21 of 236 tests (9%), mean deviation deviated by more than ±3 dB from the median. Many of these anomalous tests could be identified by applying machine learning techniques to recordings from the tablets' front-facing camera (area under the receiver operating characteristic curve = 0.78). Adding home-monitoring data to 2 standard automated perimetry tests made 6 months apart reduced measurement error (between-test measurement variability) in 97% of eyes, with mean absolute error more than halving in 90% of eyes. Median test duration was 4.5 minutes (quartiles: 3.9-5.2 minutes). Substantial variations in ambient illumination had no observable effect on VF measurements (r = 0.07, P = .320). CONCLUSIONS: Home monitoring of VFs is viable for some patients and may provide clinically useful data.