Cargando…
Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer
Algorithms can improve the objectivity and efficiency of histopathologic slide analysis. In this paper, we investigated the impact of scanning systems (scanners) and cycle-GAN-based normalization on algorithm performance, by comparing different deep learning models to automatically detect prostate c...
Autores principales: | Swiderska-Chadaj, Zaneta, de Bel, Thomas, Blanchet, Lionel, Baidoshvili, Alexi, Vossen, Dirk, van der Laak, Jeroen, Litjens, Geert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462850/ https://www.ncbi.nlm.nih.gov/pubmed/32873856 http://dx.doi.org/10.1038/s41598-020-71420-0 |
Ejemplares similares
-
Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma
por: Swiderska-Chadaj, Zaneta, et al.
Publicado: (2020) -
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019) -
Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides
por: Gertych, Arkadiusz, et al.
Publicado: (2019) -
Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics
por: Balkenhol, Maschenka CA., et al.
Publicado: (2021) -
The Importance of eSlide Macro Images for Primary Diagnosis with Whole Slide Imaging
por: Fraggetta, Filippo, et al.
Publicado: (2018)