Cargando…
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
Deep learning with Convolutional Neural Networks has shown great promise in image-based classification and enhancement but is often unsuitable for predictive modeling using features without spatial correlations. We present a feature representation approach termed REFINED (REpresentation of Features...
Autores principales: | Bazgir, Omid, Zhang, Ruibo, Dhruba, Saugato Rahman, Rahman, Raziur, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463019/ https://www.ncbi.nlm.nih.gov/pubmed/32873806 http://dx.doi.org/10.1038/s41467-020-18197-y |
Ejemplares similares
-
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019) -
Recursive model for dose-time responses in pharmacological studies
por: Dhruba, Saugato Rahman, et al.
Publicado: (2019) -
Application of transfer learning for cancer drug sensitivity prediction
por: Dhruba, Saugato Rahman, et al.
Publicado: (2018) -
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction
por: Haider, Saad, et al.
Publicado: (2015) -
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016)