Cargando…
Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy
3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond (1)H,(13)C residual dipolar couplings (RDCs) or by (13...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463026/ https://www.ncbi.nlm.nih.gov/pubmed/32873801 http://dx.doi.org/10.1038/s41467-020-18093-5 |
_version_ | 1783577041153556480 |
---|---|
author | Nath, Nilamoni Fuentes-Monteverde, Juan Carlos Pech-Puch, Dawrin Rodríguez, Jaime Jiménez, Carlos Noll, Markus Kreiter, Alexander Reggelin, Michael Navarro-Vázquez, Armando Griesinger, Christian |
author_facet | Nath, Nilamoni Fuentes-Monteverde, Juan Carlos Pech-Puch, Dawrin Rodríguez, Jaime Jiménez, Carlos Noll, Markus Kreiter, Alexander Reggelin, Michael Navarro-Vázquez, Armando Griesinger, Christian |
author_sort | Nath, Nilamoni |
collection | PubMed |
description | 3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond (1)H,(13)C residual dipolar couplings (RDCs) or by (13)C residual chemical shift anisotropies (RCSAs) provide the relative configuration. However, these RDCs or carbon RCSAs rely on 1% natural abundance of (13)C preventing their use for compounds available only in quantities of a few 10’s of µgs. By contrast, (1)H RCSAs provide similar information on spatial orientation of structural moieties within a molecule, while using the abundant (1)H spin. Herein, (1)H RCSAs are accurately measured using constrained aligning gels or liquid crystals and applied to the 3D structural determination of molecules with varying complexities. Even more, deuterated alignment media allow the elucidation of the relative configuration of around 35 µg of a briarane compound isolated from Briareum asbestinum. |
format | Online Article Text |
id | pubmed-7463026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74630262020-09-16 Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy Nath, Nilamoni Fuentes-Monteverde, Juan Carlos Pech-Puch, Dawrin Rodríguez, Jaime Jiménez, Carlos Noll, Markus Kreiter, Alexander Reggelin, Michael Navarro-Vázquez, Armando Griesinger, Christian Nat Commun Article 3D molecular structure determination is a challenge for organic compounds or natural products available in minute amounts. Proton/proton and proton/carbon correlations yield the constitution. J couplings and NOEs oftentimes supported by one-bond (1)H,(13)C residual dipolar couplings (RDCs) or by (13)C residual chemical shift anisotropies (RCSAs) provide the relative configuration. However, these RDCs or carbon RCSAs rely on 1% natural abundance of (13)C preventing their use for compounds available only in quantities of a few 10’s of µgs. By contrast, (1)H RCSAs provide similar information on spatial orientation of structural moieties within a molecule, while using the abundant (1)H spin. Herein, (1)H RCSAs are accurately measured using constrained aligning gels or liquid crystals and applied to the 3D structural determination of molecules with varying complexities. Even more, deuterated alignment media allow the elucidation of the relative configuration of around 35 µg of a briarane compound isolated from Briareum asbestinum. Nature Publishing Group UK 2020-09-01 /pmc/articles/PMC7463026/ /pubmed/32873801 http://dx.doi.org/10.1038/s41467-020-18093-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Nath, Nilamoni Fuentes-Monteverde, Juan Carlos Pech-Puch, Dawrin Rodríguez, Jaime Jiménez, Carlos Noll, Markus Kreiter, Alexander Reggelin, Michael Navarro-Vázquez, Armando Griesinger, Christian Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title | Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title_full | Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title_fullStr | Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title_full_unstemmed | Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title_short | Relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
title_sort | relative configuration of micrograms of natural compounds using proton residual chemical shift anisotropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463026/ https://www.ncbi.nlm.nih.gov/pubmed/32873801 http://dx.doi.org/10.1038/s41467-020-18093-5 |
work_keys_str_mv | AT nathnilamoni relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT fuentesmonteverdejuancarlos relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT pechpuchdawrin relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT rodriguezjaime relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT jimenezcarlos relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT nollmarkus relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT kreiteralexander relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT reggelinmichael relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT navarrovazquezarmando relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy AT griesingerchristian relativeconfigurationofmicrogramsofnaturalcompoundsusingprotonresidualchemicalshiftanisotropy |