Cargando…
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disord...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463551/ https://www.ncbi.nlm.nih.gov/pubmed/32751132 http://dx.doi.org/10.3390/biom10081119 |
_version_ | 1783577158121160704 |
---|---|
author | Tawfik, Amany Samra, Yara A. Elsherbiny, Nehal M. Al-Shabrawey, Mohamed |
author_facet | Tawfik, Amany Samra, Yara A. Elsherbiny, Nehal M. Al-Shabrawey, Mohamed |
author_sort | Tawfik, Amany |
collection | PubMed |
description | Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy. |
format | Online Article Text |
id | pubmed-7463551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74635512020-09-02 Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction Tawfik, Amany Samra, Yara A. Elsherbiny, Nehal M. Al-Shabrawey, Mohamed Biomolecules Review Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy. MDPI 2020-07-29 /pmc/articles/PMC7463551/ /pubmed/32751132 http://dx.doi.org/10.3390/biom10081119 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Tawfik, Amany Samra, Yara A. Elsherbiny, Nehal M. Al-Shabrawey, Mohamed Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title | Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title_full | Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title_fullStr | Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title_full_unstemmed | Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title_short | Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction |
title_sort | implication of hyperhomocysteinemia in blood retinal barrier (brb) dysfunction |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463551/ https://www.ncbi.nlm.nih.gov/pubmed/32751132 http://dx.doi.org/10.3390/biom10081119 |
work_keys_str_mv | AT tawfikamany implicationofhyperhomocysteinemiainbloodretinalbarrierbrbdysfunction AT samrayaraa implicationofhyperhomocysteinemiainbloodretinalbarrierbrbdysfunction AT elsherbinynehalm implicationofhyperhomocysteinemiainbloodretinalbarrierbrbdysfunction AT alshabraweymohamed implicationofhyperhomocysteinemiainbloodretinalbarrierbrbdysfunction |