Cargando…

Thermal Degradation Kinetics of ZnO/polyester Nanocomposites

ZnO particles were synthetized by the sol–gel method and subsequent heat treatment of 400, 500 and 600 °C was applied. The nano ZnO particles were incorporated to the unsaturated polyester resin by solution blending at 0.05 wt % concentration. X-ray diffraction detected the formation of a wurtzite-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco-Urquiza, E. A., May-Crespo, J. F., Escalante Velázquez, C. A., Pérez Mora, R., González García, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463767/
https://www.ncbi.nlm.nih.gov/pubmed/32764482
http://dx.doi.org/10.3390/polym12081753
Descripción
Sumario:ZnO particles were synthetized by the sol–gel method and subsequent heat treatment of 400, 500 and 600 °C was applied. The nano ZnO particles were incorporated to the unsaturated polyester resin by solution blending at 0.05 wt % concentration. X-ray diffraction detected the formation of a wurtzite-like structure. Viscoelastic behavior of neat polyester and nanocomposites revealed the nano ZnO particles does not promote better mechanical properties because of a weak interaction and the glass transition temperature of the polyester was favored by the presence of a higher quantity of nano-size ZnO particles. Thermogravimetric analysis at 5, 10 and 20 °C/min allowed determining the degradation kinetic parameters based on the Friedman and Kissinger models for neat polyester and nanocomposites. Heating rates promoted an increase in the temperature degradation and the addition of ZnO particles promoted a catalyst effect that reduce the amount of thermal energy needed to start the thermal degradation.