Cargando…
Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks
Food processing optimization can enhance the nutrient bioavailability, storage time, and stability of convenience foods. Baking is a heat and mass transfer process with a high impact on the shelf-life of the obtained product; a small variation in the parameters during baking can lead to significant...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463836/ https://www.ncbi.nlm.nih.gov/pubmed/32824075 http://dx.doi.org/10.3390/molecules25163716 |
_version_ | 1783577225150332928 |
---|---|
author | Rico, Daniel González-Paramás, Ana M. Brezmes, Cristina Martín-Diana, Ana Belén |
author_facet | Rico, Daniel González-Paramás, Ana M. Brezmes, Cristina Martín-Diana, Ana Belén |
author_sort | Rico, Daniel |
collection | PubMed |
description | Food processing optimization can enhance the nutrient bioavailability, storage time, and stability of convenience foods. Baking is a heat and mass transfer process with a high impact on the shelf-life of the obtained product; a small variation in the parameters during baking can lead to significant changes in the end baked product, as it significantly affects the food nutrient profile and bioactive compounds. Response surface methodology (RSM) was used for mapping a response surface over a particular region of interest of baking conditions. The combined effect of the two factors (baking temperature and time) on the selected quality and bioactive parameters as dependent factors was evaluated in order to predict the optimal baking conditions which can facilitate the extended shelf-life of the product through maximizing the antioxidant bioactive properties. This design was used to develop models to predict the effect of the temperature and time baking profile and select those conditions where the quality and bioactive parameters reached a balance to obtain pulse snacks with a high quality, enhanced bioactive properties, and thus a longer shelf-life. Simultaneous optimization by the desirability function showed that a maximum temperature of 210 °C and a time of 14 min were the optimum conditions to produce a pulse-based snack with high antioxidant-antihypertensive activity and nutritional quality. |
format | Online Article Text |
id | pubmed-7463836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74638362020-09-04 Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks Rico, Daniel González-Paramás, Ana M. Brezmes, Cristina Martín-Diana, Ana Belén Molecules Article Food processing optimization can enhance the nutrient bioavailability, storage time, and stability of convenience foods. Baking is a heat and mass transfer process with a high impact on the shelf-life of the obtained product; a small variation in the parameters during baking can lead to significant changes in the end baked product, as it significantly affects the food nutrient profile and bioactive compounds. Response surface methodology (RSM) was used for mapping a response surface over a particular region of interest of baking conditions. The combined effect of the two factors (baking temperature and time) on the selected quality and bioactive parameters as dependent factors was evaluated in order to predict the optimal baking conditions which can facilitate the extended shelf-life of the product through maximizing the antioxidant bioactive properties. This design was used to develop models to predict the effect of the temperature and time baking profile and select those conditions where the quality and bioactive parameters reached a balance to obtain pulse snacks with a high quality, enhanced bioactive properties, and thus a longer shelf-life. Simultaneous optimization by the desirability function showed that a maximum temperature of 210 °C and a time of 14 min were the optimum conditions to produce a pulse-based snack with high antioxidant-antihypertensive activity and nutritional quality. MDPI 2020-08-14 /pmc/articles/PMC7463836/ /pubmed/32824075 http://dx.doi.org/10.3390/molecules25163716 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rico, Daniel González-Paramás, Ana M. Brezmes, Cristina Martín-Diana, Ana Belén Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title | Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title_full | Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title_fullStr | Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title_full_unstemmed | Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title_short | Baking Optimization as a Strategy to Extend Shelf-Life through the Enhanced Quality and Bioactive Properties of Pulse-Based Snacks |
title_sort | baking optimization as a strategy to extend shelf-life through the enhanced quality and bioactive properties of pulse-based snacks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463836/ https://www.ncbi.nlm.nih.gov/pubmed/32824075 http://dx.doi.org/10.3390/molecules25163716 |
work_keys_str_mv | AT ricodaniel bakingoptimizationasastrategytoextendshelflifethroughtheenhancedqualityandbioactivepropertiesofpulsebasedsnacks AT gonzalezparamasanam bakingoptimizationasastrategytoextendshelflifethroughtheenhancedqualityandbioactivepropertiesofpulsebasedsnacks AT brezmescristina bakingoptimizationasastrategytoextendshelflifethroughtheenhancedqualityandbioactivepropertiesofpulsebasedsnacks AT martindianaanabelen bakingoptimizationasastrategytoextendshelflifethroughtheenhancedqualityandbioactivepropertiesofpulsebasedsnacks |