Cargando…
Nickel-Graphene Nanoplatelet Deposited on Carbon Fiber as Binder-Free Electrode for Electrochemical Supercapacitor Application
A binder-free process for the electrode preparation for supercapacitor application was suggested by drop casting graphene nanoplatelets on a carbon fiber (GnP@CF) followed by electrodeposition of Ni nanoparticles (NPs). The microstructure of the electrode showed that Ni was homogeneously distributed...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463841/ https://www.ncbi.nlm.nih.gov/pubmed/32727000 http://dx.doi.org/10.3390/polym12081666 |
Sumario: | A binder-free process for the electrode preparation for supercapacitor application was suggested by drop casting graphene nanoplatelets on a carbon fiber (GnP@CF) followed by electrodeposition of Ni nanoparticles (NPs). The microstructure of the electrode showed that Ni was homogeneously distributed over the surface of the GnP@CF. XRD analysis confirmed the cubic structure of metallic Ni NPs. The Ni-GnP@CF electrode showed excellent pseudocapacitive behavior in alkaline solution by exhibiting a specific capacitance of 480 F/g at 1.0 A/g, while it was 375 F/g for Ni@CF. The low value of series resistance of Ni-GnP@CF (1 Ω) was attributed to the high capacitance. The enhanced capacitance of the electrode could be correlated to the highly nanoporous structure of the composite material, synergetic effect of the electrical double layer charge-storage properties of graphene, and the pseudocapacitive nature of Ni NPs. |
---|