Cargando…

Effect of Topical Administration of Somatostatin on Retinal Inflammation and Neurodegeneration in an Experimental Model of Diabetes

Somatostatin (SST) is a neuroprotective peptide but little is known regarding the potential role of its anti-inflammatory effects on retinal neuroprotection. In a previous study, we provided the first evidence that topical (eye drops) administration of SST prevents retinal neurodegeneration in strep...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernández, Cristina, Arroba, Ana I, Bogdanov, Patricia, Ramos, Hugo, Simó-Servat, Olga, Simó, Rafael, Valverde, Angela M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463891/
https://www.ncbi.nlm.nih.gov/pubmed/32784955
http://dx.doi.org/10.3390/jcm9082579
Descripción
Sumario:Somatostatin (SST) is a neuroprotective peptide but little is known regarding the potential role of its anti-inflammatory effects on retinal neuroprotection. In a previous study, we provided the first evidence that topical (eye drops) administration of SST prevents retinal neurodegeneration in streptozotocin (STZ)-induced diabetic rats. However, STZ by itself could cause neurotoxicity, thus acting as a confounding factor. The aims of the present study were: (1) to test the effect of topical administration of SST in the db/db mouse model, a spontaneous model of type 2 diabetes, thus avoiding the confounding effect of STZ on neurodegeneration; (2) to further explore the anti-inflammatory mechanisms of SST in glial cells. This task was performed by using mouse retinal explants and cell cultures. In summary, we confirm that SST topically administered was able to prevent retinal neurodysfunction and neurodegeneration in db/db mice. Furthermore, we found that SST prevented the activation of the classical M1 response of Bv.2 microglial cells upon Lipopolysaccharide (LPS) stimulation as a potent pro-inflammatory trigger. The anti-inflammatory effect of SST in Bv.2 cells was also observed in response to hypoxia. In conclusion, we provide evidence that the neuroprotective effect of SST in diabetic retinas can be largely attributed to anti-inflammatory mechanisms.