Cargando…

The Study of HEMs Based on the Mechanically Activated Intermetallic Al(12)Mg(17) Powder

In this work, Al–Mg intermetallic powders were characterized and obtained by melting, casting into a steel chill and subsequent mechanical activation in a planetary mill. The method for producing Al(12)Mg(17) intermetallic powder is presented. The dispersity, morphology, chemical composition, and ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Sokolov, Sergei, Vorozhtsov, Alexander, Arkhipov, Vladimir, Zhukov, Ilya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464348/
https://www.ncbi.nlm.nih.gov/pubmed/32764466
http://dx.doi.org/10.3390/molecules25163561
Descripción
Sumario:In this work, Al–Mg intermetallic powders were characterized and obtained by melting, casting into a steel chill and subsequent mechanical activation in a planetary mill. The method for producing Al(12)Mg(17) intermetallic powder is presented. The dispersity, morphology, chemical composition, and phase composition of the obtained powder materials were investigated. Certain thermodynamic properties of high-energy materials containing the Al-Mg powder after mechanical activation of various durations were investigated. The addition of the Al-Mg powders to the high-energy composition (synthetic rubber SKDM-80 + ammonium perchlorate AP + boron B) can significantly increase the burning rate by approximately 47% and the combustion heat by approximately 23% compared with the high-energy compositions without the Al-Mg powder. The addition of the Al(12)Mg(17) powder obtained after 6 h of mechanical activation provides an increase in the burning rate by 8% (2.5 ± 0.1 mm/s for the mechanically activated Al(12)Mg(17) powder and 2.3 ± 0.1 mm/s for the commercially available powder) and an increase in the combustion heat by 3% (7.4 ± 0.2 MJ/kg for the mechanically activated Al-Mg powder and 7.1 ± 0.2 MJ/kg for the commercially available powder). The possibility of using the Al-Mg intermetallic powders as the main component of pyrotechnic and special compositions is shown.