Cargando…
Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data
With the high prevalence of breast cancer, it is urgent to find out the intrinsic difference between various subtypes, so as to infer the underlying mechanisms. Given the available multi-omics data, their proper integration can improve the accuracy of breast cancer subtype recognition. In this study...
Autores principales: | Lin, Yuqi, Zhang, Wen, Cao, Huanshen, Li, Gaoyang, Du, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464481/ https://www.ncbi.nlm.nih.gov/pubmed/32759821 http://dx.doi.org/10.3390/genes11080888 |
Ejemplares similares
-
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data
por: Tao, Mingxin, et al.
Publicado: (2019) -
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
por: Yin, Chaoyi, et al.
Publicado: (2022) -
A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data
por: Xu, Jing, et al.
Publicado: (2019) -
MOCSS: Multi-omics data clustering and cancer subtyping via shared and specific representation learning
por: Chen, Yuxin, et al.
Publicado: (2023) -
SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition
por: Sun, Qiuwen, et al.
Publicado: (2023)