Cargando…

Advanced Fabrication Techniques of Microengineered Physiological Systems

The field of organs-on-chips (OOCs) has experienced tremendous growth over the last decade. However, the current main limiting factor for further growth lies in the fabrication techniques utilized to reproducibly create multiscale and multifunctional devices. Conventional methods of photolithography...

Descripción completa

Detalles Bibliográficos
Autores principales: Puryear III, Joseph R., Yoon, Jeong-Kee, Kim, YongTae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464561/
https://www.ncbi.nlm.nih.gov/pubmed/32731495
http://dx.doi.org/10.3390/mi11080730
Descripción
Sumario:The field of organs-on-chips (OOCs) has experienced tremendous growth over the last decade. However, the current main limiting factor for further growth lies in the fabrication techniques utilized to reproducibly create multiscale and multifunctional devices. Conventional methods of photolithography and etching remain less useful to complex geometric conditions with high precision needed to manufacture the devices, while laser-induced methods have become an alternative for higher precision engineering yet remain costly. Meanwhile, soft lithography has become the foundation upon which OOCs are fabricated and newer methods including 3D printing and injection molding show great promise to innovate the way OOCs are fabricated. This review is focused on the advantages and disadvantages associated with the commonly used fabrication techniques applied to these microengineered physiological systems (MPS) and the obstacles that remain in the way of further innovation in the field.