Cargando…
Prediction of Adverse Events in Stable Non-Variceal Gastrointestinal Bleeding Using Machine Learning
Clinical risk-scoring systems are important for identifying patients with upper gastrointestinal bleeding (UGIB) who are at a high risk of hemodynamic instability. We developed an algorithm that predicts adverse events in patients with initially stable non-variceal UGIB using machine learning (ML)....
Autores principales: | Seo, Dong-Woo, Yi, Hahn, Park, Beomhee, Kim, Youn-Jung, Jung, Dae Ho, Woo, Ilsang, Sohn, Chang Hwan, Ko, Byuk Sung, Kim, Namkug, Kim, Won Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464777/ https://www.ncbi.nlm.nih.gov/pubmed/32796647 http://dx.doi.org/10.3390/jcm9082603 |
Ejemplares similares
-
Early Risk Score for Predicting Hypotension in Normotensive Patients with Non-Variceal Upper Gastrointestinal Bleeding
por: Ko, Byuk Sung, et al.
Publicado: (2019) -
Management of Non-Variceal Upper Gastrointestinal Bleeding
por: Kim, Seung Young, et al.
Publicado: (2012) -
Is the AIMS 65 Score Useful in Prepdicting Clinical Outcomes in Korean Patients with Variceal and Nonvariceal Upper Gastrointestinal Bleeding?
por: Choe, Jung Wan, et al.
Publicado: (2017) -
Management of Acute Variceal Bleeding
por: Kim, Young Dae
Publicado: (2014) -
Upper gastrointestinal ectopic variceal bleeding treated with various endoscopic modalities: Case reports and literature review
por: Park, Sang Woo, et al.
Publicado: (2017)