Cargando…

Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria

Due to the rapid increase of antimicrobial resistance with ensuring therapeutic failures, the purpose of this study was to identify novel synthetic molecules as alternatives to conventional available, but presently ineffective antibiotics. Variously structured cationic dendrimers previously reported...

Descripción completa

Detalles Bibliográficos
Autores principales: Schito, Anna Maria, Alfei, Silvana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464783/
https://www.ncbi.nlm.nih.gov/pubmed/32823557
http://dx.doi.org/10.3390/polym12081818
_version_ 1783577442918596608
author Schito, Anna Maria
Alfei, Silvana
author_facet Schito, Anna Maria
Alfei, Silvana
author_sort Schito, Anna Maria
collection PubMed
description Due to the rapid increase of antimicrobial resistance with ensuring therapeutic failures, the purpose of this study was to identify novel synthetic molecules as alternatives to conventional available, but presently ineffective antibiotics. Variously structured cationic dendrimers previously reported have provided promising outcomes. However, the problem of their cytotoxicity towards eukaryotic cells has not been completely overcome. We have now investigated the antibacterial activities of three not cytotoxic cationic dendrimers (G5Ds: G5H, G5K, and G5HK) against several multidrug-resistant (MDR) clinical strains. All G5Ds displayed remarkable activity against MDR non-fermenting Gram-negative species such as P. aeruginosa, S. maltophilia, and A. baumannii (MICs = 0.5–33.2 µM). In particular, very low MIC values (0.5–2.1 µM) were observed for G5K, which proved to be more active than the potent colistin (2.1 versus 3.19 µM) against P. aeruginosa. Concerning its mechanism of action, in time-killing and turbidimetric studies, G5K displayed a rapid non-lytic bactericidal activity. Considering the absence of cytotoxicity of these new compounds and their potency, comparable or even higher than that provided by the dendrimers previously reported, G5Ds may be proposed as promising novel antibacterial agents capable of overcoming the alarming resistance rates of several nosocomial non-fermenting Gram-negative pathogens.
format Online
Article
Text
id pubmed-7464783
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74647832020-09-04 Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria Schito, Anna Maria Alfei, Silvana Polymers (Basel) Article Due to the rapid increase of antimicrobial resistance with ensuring therapeutic failures, the purpose of this study was to identify novel synthetic molecules as alternatives to conventional available, but presently ineffective antibiotics. Variously structured cationic dendrimers previously reported have provided promising outcomes. However, the problem of their cytotoxicity towards eukaryotic cells has not been completely overcome. We have now investigated the antibacterial activities of three not cytotoxic cationic dendrimers (G5Ds: G5H, G5K, and G5HK) against several multidrug-resistant (MDR) clinical strains. All G5Ds displayed remarkable activity against MDR non-fermenting Gram-negative species such as P. aeruginosa, S. maltophilia, and A. baumannii (MICs = 0.5–33.2 µM). In particular, very low MIC values (0.5–2.1 µM) were observed for G5K, which proved to be more active than the potent colistin (2.1 versus 3.19 µM) against P. aeruginosa. Concerning its mechanism of action, in time-killing and turbidimetric studies, G5K displayed a rapid non-lytic bactericidal activity. Considering the absence of cytotoxicity of these new compounds and their potency, comparable or even higher than that provided by the dendrimers previously reported, G5Ds may be proposed as promising novel antibacterial agents capable of overcoming the alarming resistance rates of several nosocomial non-fermenting Gram-negative pathogens. MDPI 2020-08-13 /pmc/articles/PMC7464783/ /pubmed/32823557 http://dx.doi.org/10.3390/polym12081818 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Schito, Anna Maria
Alfei, Silvana
Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title_full Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title_fullStr Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title_full_unstemmed Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title_short Antibacterial Activity of Non-Cytotoxic, Amino Acid-Modified Polycationic Dendrimers against Pseudomonas aeruginosa and Other Non-Fermenting Gram-Negative Bacteria
title_sort antibacterial activity of non-cytotoxic, amino acid-modified polycationic dendrimers against pseudomonas aeruginosa and other non-fermenting gram-negative bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464783/
https://www.ncbi.nlm.nih.gov/pubmed/32823557
http://dx.doi.org/10.3390/polym12081818
work_keys_str_mv AT schitoannamaria antibacterialactivityofnoncytotoxicaminoacidmodifiedpolycationicdendrimersagainstpseudomonasaeruginosaandothernonfermentinggramnegativebacteria
AT alfeisilvana antibacterialactivityofnoncytotoxicaminoacidmodifiedpolycationicdendrimersagainstpseudomonasaeruginosaandothernonfermentinggramnegativebacteria