Cargando…
The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning
Recent studies have demonstrated the usefulness of convolutional neural networks (CNNs) to classify images of melanoma, with accuracies comparable to those achieved by dermatologists. However, the performance of a CNN trained with only clinical images of a pigmented skin lesion in a clinical image c...
Autores principales: | Jinnai, Shunichi, Yamazaki, Naoya, Hirano, Yuichiro, Sugawara, Yohei, Ohe, Yuichiro, Hamamoto, Ryuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465007/ https://www.ncbi.nlm.nih.gov/pubmed/32751349 http://dx.doi.org/10.3390/biom10081123 |
Ejemplares similares
-
Deep Neural Frameworks Improve the Accuracy of General Practitioners in the Classification of Pigmented Skin Lesions
por: Lucius, Maximiliano, et al.
Publicado: (2020) -
Classification of Skin Cancer Lesions Using Explainable Deep Learning
por: Zia Ur Rehman, Muhammad, et al.
Publicado: (2022) -
Artificial Intelligence for the Classification of Pigmented Skin Lesions in Populations with Skin of Color: A Systematic Review
por: Liu, Yuyang, et al.
Publicado: (2023) -
Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases
por: Thomsen, Kenneth, et al.
Publicado: (2020) -
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification
por: Nugroho, Erwin Setyo, et al.
Publicado: (2023)