Cargando…
Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum)
This study aimed to assess effect of nitrogen (N) form and phosphorus (P) level on the growth and mineral composition of hybrid Napier grass. Experimental plants were grown with different N forms (NO(3)(−), NH(4)NO(3), and NH(4)(+); 500 µM) and P concentrations (100 and 500 µM) under greenhouse cond...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465140/ https://www.ncbi.nlm.nih.gov/pubmed/32784553 http://dx.doi.org/10.3390/plants9081003 |
_version_ | 1783577521983324160 |
---|---|
author | Pakwan, Chonthicha Jampeetong, Arunothai Brix, Hans |
author_facet | Pakwan, Chonthicha Jampeetong, Arunothai Brix, Hans |
author_sort | Pakwan, Chonthicha |
collection | PubMed |
description | This study aimed to assess effect of nitrogen (N) form and phosphorus (P) level on the growth and mineral composition of hybrid Napier grass. Experimental plants were grown with different N forms (NO(3)(−), NH(4)NO(3), and NH(4)(+); 500 µM) and P concentrations (100 and 500 µM) under greenhouse conditions for 42 days. Growth rate, morphology, pigments, and mineral nutrients in the plant tissue were analysed. At the low P concentration, the better growth was found in the plants supplied with NH(4)(+) (relative growth rate (RGR) = 0.05 g·g(−1)·d(−)(1)), but at the high P concentration, the NH(4)(+)-fed plants had 37% lower growth rates and shorter roots and stems. At the high P level, the NH(4)NO(3)(−)-fed plants had the highest RGR (0.04 g·g(−1)·d(−1)). The mineral nutrient concentrations in the plant tissues were only slightly affected by N form and P concentration, although the P concentrations in the plant tissue of the NO(3)(−)-fed plants supplied with the high P concentration was 26% higher compared to the low P concentration plants. The N concentrations in the plant tissues did not vary between treatments. The results showed that the optimum N form for the plant growth and biomass productivity of hybrid Napier grass depends on P level. Hybrid Napier grass may be irrigated by treated wastewater containing high concentrations of N and P, but future studies are needed to evaluate biomass production and composition when irrigating with real wastewater from animal farms. |
format | Online Article Text |
id | pubmed-7465140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74651402020-09-04 Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) Pakwan, Chonthicha Jampeetong, Arunothai Brix, Hans Plants (Basel) Article This study aimed to assess effect of nitrogen (N) form and phosphorus (P) level on the growth and mineral composition of hybrid Napier grass. Experimental plants were grown with different N forms (NO(3)(−), NH(4)NO(3), and NH(4)(+); 500 µM) and P concentrations (100 and 500 µM) under greenhouse conditions for 42 days. Growth rate, morphology, pigments, and mineral nutrients in the plant tissue were analysed. At the low P concentration, the better growth was found in the plants supplied with NH(4)(+) (relative growth rate (RGR) = 0.05 g·g(−1)·d(−)(1)), but at the high P concentration, the NH(4)(+)-fed plants had 37% lower growth rates and shorter roots and stems. At the high P level, the NH(4)NO(3)(−)-fed plants had the highest RGR (0.04 g·g(−1)·d(−1)). The mineral nutrient concentrations in the plant tissues were only slightly affected by N form and P concentration, although the P concentrations in the plant tissue of the NO(3)(−)-fed plants supplied with the high P concentration was 26% higher compared to the low P concentration plants. The N concentrations in the plant tissues did not vary between treatments. The results showed that the optimum N form for the plant growth and biomass productivity of hybrid Napier grass depends on P level. Hybrid Napier grass may be irrigated by treated wastewater containing high concentrations of N and P, but future studies are needed to evaluate biomass production and composition when irrigating with real wastewater from animal farms. MDPI 2020-08-07 /pmc/articles/PMC7465140/ /pubmed/32784553 http://dx.doi.org/10.3390/plants9081003 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pakwan, Chonthicha Jampeetong, Arunothai Brix, Hans Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title | Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title_full | Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title_fullStr | Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title_full_unstemmed | Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title_short | Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum) |
title_sort | interactive effects of n form and p concentration on growth and tissue composition of hybrid napier grass (pennisetum purpureum × pennisetum americanum) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465140/ https://www.ncbi.nlm.nih.gov/pubmed/32784553 http://dx.doi.org/10.3390/plants9081003 |
work_keys_str_mv | AT pakwanchonthicha interactiveeffectsofnformandpconcentrationongrowthandtissuecompositionofhybridnapiergrasspennisetumpurpureumpennisetumamericanum AT jampeetongarunothai interactiveeffectsofnformandpconcentrationongrowthandtissuecompositionofhybridnapiergrasspennisetumpurpureumpennisetumamericanum AT brixhans interactiveeffectsofnformandpconcentrationongrowthandtissuecompositionofhybridnapiergrasspennisetumpurpureumpennisetumamericanum |