Cargando…
A Novel Mutual Information Based Feature Set for Drivers’ Mental Workload Evaluation Using Machine Learning
Analysis of physiological signals, electroencephalography more specifically, is considered a very promising technique to obtain objective measures for mental workload evaluation, however, it requires a complex apparatus to record, and thus, with poor usability in monitoring in-vehicle drivers’ menta...
Autores principales: | Islam, Mir Riyanul, Barua, Shaibal, Ahmed, Mobyen Uddin, Begum, Shahina, Aricò, Pietro, Borghini, Gianluca, Di Flumeri, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465285/ https://www.ncbi.nlm.nih.gov/pubmed/32823582 http://dx.doi.org/10.3390/brainsci10080551 |
Ejemplares similares
-
Study on human subjects – influence of stress and alcohol in simulated traffic situations
por: Ahmed, Mobyen Uddin, et al.
Publicado: (2021) -
Towards Intelligent Data Analytics: A Case Study in Driver Cognitive Load Classification
por: Barua, Shaibal, et al.
Publicado: (2020) -
Vision-Based Driver’s Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning
por: Rahman, Hamidur, et al.
Publicado: (2021) -
Physiological Sensor Signals Classification for Healthcare Using Sensor Data Fusion and Case-Based Reasoning
por: Begum, Shahina, et al.
Publicado: (2014) -
The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence
por: Marucci, Matteo, et al.
Publicado: (2021)