Cargando…
Histopathological Classification of Breast Cancer Images Using a Multi-Scale Input and Multi-Feature Network
Diagnosis of pathologies using histopathological images can be time-consuming when many images with different magnification levels need to be analyzed. State-of-the-art computer vision and machine learning methods can help automate the diagnostic pathology workflow and thus reduce the analysis time....
Autores principales: | Sheikh, Taimoor Shakeel, Lee, Yonghee, Cho, Migyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465368/ https://www.ncbi.nlm.nih.gov/pubmed/32722111 http://dx.doi.org/10.3390/cancers12082031 |
Ejemplares similares
-
Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis
por: Sheikh, Taimoor Shakeel, et al.
Publicado: (2022) -
A Comparison Between Single- and Multi-Scale Approaches for Classification of Histopathology Images
por: D'Amato, Marina, et al.
Publicado: (2022) -
Psoriasis severity classification based on adaptive multi-scale features for multi-severity disease
por: Moon, Cho-I., et al.
Publicado: (2023) -
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images
por: Bagchi, Arnab, et al.
Publicado: (2022) -
Contextual Features and Information Bottleneck-Based Multi-Input Network for Breast Cancer Classification from Contrast-Enhanced Spectral Mammography
por: Li, Xinmeng, et al.
Publicado: (2022)