Cargando…
Which Zebrafish Strains Are More Suitable to Perform Behavioral Studies? A Comprehensive Comparison by Phenomic Approach
Wild-type (WT) zebrafish are commonly used in behavioral tests, however, the term WT corresponds to many different strains, such as AB, Tübingen long fin (TL), and Wild Indian Karyotype (WIK). Since these strains are widely used, there has to be at least one study to demonstrate the behavioral diffe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465594/ https://www.ncbi.nlm.nih.gov/pubmed/32752218 http://dx.doi.org/10.3390/biology9080200 |
Sumario: | Wild-type (WT) zebrafish are commonly used in behavioral tests, however, the term WT corresponds to many different strains, such as AB, Tübingen long fin (TL), and Wild Indian Karyotype (WIK). Since these strains are widely used, there has to be at least one study to demonstrate the behavioral differences between them. In our study, six zebrafish strains were used, which are AB, absolute, TL, golden, pet store-purchased (PET), and WIK zebrafishes. The behavior of these fishes was tested in a set of behavioral tests, including novel tank, mirror-biting, predator avoidance, social interaction, and shoaling tests. From the results, the differences were observed for all behavioral tests, and each strain displayed particular behavior depending on the tests. In addition, from the heatmap and PCA (principal component analysis) results, two major clusters were displayed, separating the AB and TL zebrafishes with other strains in another cluster. Furthermore, after the coefficient of variation of each strain in every behavioral test was calculated, the AB and TL zebrafishes were found to possess a low percentage of the coefficient of variation, highlighting the strong reproducibility and the robustness of the behaviors tested in both fishes. Each zebrafish strain tested in this experiment showed specifically different behaviors from each other, thus, strain-specific zebrafish behavior should be considered when designing experiments using zebrafish behavior. |
---|