Cargando…
Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus
Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. In order to solve this issue, a fingerprint database based on the die...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465928/ https://www.ncbi.nlm.nih.gov/pubmed/32751961 http://dx.doi.org/10.3390/polym12081722 |
_version_ | 1783577694725734400 |
---|---|
author | Zhang, Yiyi Li, Sheng Fan, Xianhao Liu, Jiefeng Li, Jiaxi |
author_facet | Zhang, Yiyi Li, Sheng Fan, Xianhao Liu, Jiefeng Li, Jiaxi |
author_sort | Zhang, Yiyi |
collection | PubMed |
description | Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. In order to solve this issue, a fingerprint database based on the dielectric modulus is reported to predict the degree of polymerization (DP) and moisture content of cellulose insulation. In the current work, the relevant fingerprints that characterize the insulation conditions are obtained by studying the dielectric modulus curves of cellulose insulation with various insulation conditions, as well as the DC conductivity of transformer oil. Then, the dielectric modulus fingerprint database is established in the lab, and the accuracy of the reported fingerprint database is later verified. As a potential tool, the dielectric modulus fingerprint database is tested by several samples, and the results demonstrate that the accuracy of this method is more than 80%. In that respect, an interesting discovery of this paper is that the dielectric modulus fingerprint database may be a helpful tool for conditions prediction of the transformer cellulose insulation system. |
format | Online Article Text |
id | pubmed-7465928 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74659282020-09-04 Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus Zhang, Yiyi Li, Sheng Fan, Xianhao Liu, Jiefeng Li, Jiaxi Polymers (Basel) Article Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. In order to solve this issue, a fingerprint database based on the dielectric modulus is reported to predict the degree of polymerization (DP) and moisture content of cellulose insulation. In the current work, the relevant fingerprints that characterize the insulation conditions are obtained by studying the dielectric modulus curves of cellulose insulation with various insulation conditions, as well as the DC conductivity of transformer oil. Then, the dielectric modulus fingerprint database is established in the lab, and the accuracy of the reported fingerprint database is later verified. As a potential tool, the dielectric modulus fingerprint database is tested by several samples, and the results demonstrate that the accuracy of this method is more than 80%. In that respect, an interesting discovery of this paper is that the dielectric modulus fingerprint database may be a helpful tool for conditions prediction of the transformer cellulose insulation system. MDPI 2020-07-31 /pmc/articles/PMC7465928/ /pubmed/32751961 http://dx.doi.org/10.3390/polym12081722 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yiyi Li, Sheng Fan, Xianhao Liu, Jiefeng Li, Jiaxi Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title | Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title_full | Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title_fullStr | Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title_full_unstemmed | Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title_short | Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus |
title_sort | prediction of moisture and aging conditions of oil-immersed cellulose insulation based on fingerprints database of dielectric modulus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465928/ https://www.ncbi.nlm.nih.gov/pubmed/32751961 http://dx.doi.org/10.3390/polym12081722 |
work_keys_str_mv | AT zhangyiyi predictionofmoistureandagingconditionsofoilimmersedcelluloseinsulationbasedonfingerprintsdatabaseofdielectricmodulus AT lisheng predictionofmoistureandagingconditionsofoilimmersedcelluloseinsulationbasedonfingerprintsdatabaseofdielectricmodulus AT fanxianhao predictionofmoistureandagingconditionsofoilimmersedcelluloseinsulationbasedonfingerprintsdatabaseofdielectricmodulus AT liujiefeng predictionofmoistureandagingconditionsofoilimmersedcelluloseinsulationbasedonfingerprintsdatabaseofdielectricmodulus AT lijiaxi predictionofmoistureandagingconditionsofoilimmersedcelluloseinsulationbasedonfingerprintsdatabaseofdielectricmodulus |