Cargando…

Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer

Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez-Herrero, Alvaro, Calvo, Isabel A., Flandes-Iparraguirre, Maria, Landgraf, Marietta, Lahr, Christoph A., Shafiee, Abbas, Granero-Molto, Froilán, Saez, Borja, Mazo, Manuel M., Paiva, Bruno, de Juan Pardo, Elena, Nicol, Andrew, Prosper, Felipe, Bray, Laura J., McGovern, Jacqui A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466161/
https://www.ncbi.nlm.nih.gov/pubmed/32781703
http://dx.doi.org/10.3390/cancers12082205
Descripción
Sumario:Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34(+) cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34(+) cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34(+) cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34(+), overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.