Cargando…

Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis

BACKGROUND: Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic choices made...

Descripción completa

Detalles Bibliográficos
Autores principales: Conlon, Kathryn C., Mallen, Evan, Gronlund, Carina J., Berrocal, Veronica J., Larsen, Larissa, O’Neill, Marie S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Environmental Health Perspectives 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466325/
https://www.ncbi.nlm.nih.gov/pubmed/32875815
http://dx.doi.org/10.1289/EHP4030
_version_ 1783577787022442496
author Conlon, Kathryn C.
Mallen, Evan
Gronlund, Carina J.
Berrocal, Veronica J.
Larsen, Larissa
O’Neill, Marie S.
author_facet Conlon, Kathryn C.
Mallen, Evan
Gronlund, Carina J.
Berrocal, Veronica J.
Larsen, Larissa
O’Neill, Marie S.
author_sort Conlon, Kathryn C.
collection PubMed
description BACKGROUND: Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic choices made when employing this methodology for fine-scale vulnerability mapping. OBJECTIVE: We investigated sensitivity of HVIs created by applying PCA to input variables and whether training input variables on heat–health data produced HVIs with similar spatial vulnerability patterns for Detroit, Michigan, USA. METHODS: We acquired 2010 Census tract and block group level data, land cover data, daily ambient apparent temperature, and all-cause mortality during May–September, 2000–2009. We used PCA to construct HVIs using: a) “unsupervised”—PCA applied to variables selected a priori as risk factors for heat-related health outcomes; b) “supervised”—PCA applied only to variables significantly correlated with proportion of all-cause mortality occurring on extreme heat days (i.e., days with 2-d mean apparent temperature above month-specific 95th percentiles). RESULTS: Unsupervised and supervised HVIs yielded differing spatial vulnerability patterns, depending on selected land cover input variables. Supervised PCA explained 62% of variance in the input variables and was applied on half the variables used in the unsupervised method. Census tract–level supervised HVI values were positively associated with increased proportion of mortality occurring on extreme heat days; supervised PCA could not be applied to block group data. Unsupervised HVI values were not associated with extreme heat mortality for either tracts or block groups. DISCUSSION: HVIs calculated using PCA are sensitive to input data and scale. Supervised HVIs may provide marginally more specific indicators of heat vulnerability than unsupervised HVIs. PCA-derived HVIs address correlation among vulnerability indicators, although the resulting output requires careful contextual interpretation beyond generating epidemiological research questions. Methods with reliably stable outputs should be leveraged for prioritizing heat interventions. https://doi.org/10.1289/EHP4030
format Online
Article
Text
id pubmed-7466325
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Environmental Health Perspectives
record_format MEDLINE/PubMed
spelling pubmed-74663252020-09-02 Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis Conlon, Kathryn C. Mallen, Evan Gronlund, Carina J. Berrocal, Veronica J. Larsen, Larissa O’Neill, Marie S. Environ Health Perspect Research BACKGROUND: Extreme heat poses current and future risks to human health. Heat vulnerability indices (HVIs), commonly developed using principal components analysis (PCA), are mapped to identify populations vulnerable to extreme heat. Few studies critically assess implications of analytic choices made when employing this methodology for fine-scale vulnerability mapping. OBJECTIVE: We investigated sensitivity of HVIs created by applying PCA to input variables and whether training input variables on heat–health data produced HVIs with similar spatial vulnerability patterns for Detroit, Michigan, USA. METHODS: We acquired 2010 Census tract and block group level data, land cover data, daily ambient apparent temperature, and all-cause mortality during May–September, 2000–2009. We used PCA to construct HVIs using: a) “unsupervised”—PCA applied to variables selected a priori as risk factors for heat-related health outcomes; b) “supervised”—PCA applied only to variables significantly correlated with proportion of all-cause mortality occurring on extreme heat days (i.e., days with 2-d mean apparent temperature above month-specific 95th percentiles). RESULTS: Unsupervised and supervised HVIs yielded differing spatial vulnerability patterns, depending on selected land cover input variables. Supervised PCA explained 62% of variance in the input variables and was applied on half the variables used in the unsupervised method. Census tract–level supervised HVI values were positively associated with increased proportion of mortality occurring on extreme heat days; supervised PCA could not be applied to block group data. Unsupervised HVI values were not associated with extreme heat mortality for either tracts or block groups. DISCUSSION: HVIs calculated using PCA are sensitive to input data and scale. Supervised HVIs may provide marginally more specific indicators of heat vulnerability than unsupervised HVIs. PCA-derived HVIs address correlation among vulnerability indicators, although the resulting output requires careful contextual interpretation beyond generating epidemiological research questions. Methods with reliably stable outputs should be leveraged for prioritizing heat interventions. https://doi.org/10.1289/EHP4030 Environmental Health Perspectives 2020-09-02 /pmc/articles/PMC7466325/ /pubmed/32875815 http://dx.doi.org/10.1289/EHP4030 Text en https://ehp.niehs.nih.gov/about-ehp/license EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.
spellingShingle Research
Conlon, Kathryn C.
Mallen, Evan
Gronlund, Carina J.
Berrocal, Veronica J.
Larsen, Larissa
O’Neill, Marie S.
Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title_full Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title_fullStr Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title_full_unstemmed Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title_short Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat Vulnerability Indices Created Using Principal Components Analysis
title_sort mapping human vulnerability to extreme heat: a critical assessment of heat vulnerability indices created using principal components analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466325/
https://www.ncbi.nlm.nih.gov/pubmed/32875815
http://dx.doi.org/10.1289/EHP4030
work_keys_str_mv AT conlonkathrync mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis
AT mallenevan mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis
AT gronlundcarinaj mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis
AT berrocalveronicaj mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis
AT larsenlarissa mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis
AT oneillmaries mappinghumanvulnerabilitytoextremeheatacriticalassessmentofheatvulnerabilityindicescreatedusingprincipalcomponentsanalysis