Cargando…
Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells
Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possib...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466460/ https://www.ncbi.nlm.nih.gov/pubmed/32722568 http://dx.doi.org/10.3390/nano10081462 |
_version_ | 1783577819179122688 |
---|---|
author | Al-Kattan, Ahmed M. A. Ali, Lamiaa Daurat, Morgane Mattana, Elodie Gary-Bobo, Magali |
author_facet | Al-Kattan, Ahmed M. A. Ali, Lamiaa Daurat, Morgane Mattana, Elodie Gary-Bobo, Magali |
author_sort | Al-Kattan, Ahmed |
collection | PubMed |
description | Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possibility to use laser-synthesized Si NPs as photosensitizers in two-photon excited photodynamic therapy (TPE-PDT) modality. Herein, we used an easy strategy to synthesize ultraclean and monodispersed SiNPs using laser ablation and fragmentation sequences of silicon wafer in aqueous solution, which prevent any specific purification step. Structural analysis revealed the spherical shape of the nanoparticles with a narrow size distribution centered at the mean size diameter of 62 nm ± 0.42 nm, while the negative surface charge of −40 ± 0.3 mV ensured a great stability without sedimentation over a long period of time. In vitro studies on human cancer cell lines (breast and liver) and healthy cells revealed their low cytotoxicity without any light stimulus and their therapeutic potential under TPE-PDT mode at 900 nm with a promising cell death of 45% in case of MCF-7 breast cancer cells, as a consequence of intracellular reactive oxygen species release. Their luminescence emission inside the cells was clearly observed at UV-Vis region. Compared to Si nanoparticles synthesized via chemical routes, which are often linked to additional modules with photochemical and photobiological properties to boost photodynamic effect, laser-synthesized SiNPs exhibit promising intrinsic therapeutic and imaging properties to develop advanced strategy in nanomedicine field. |
format | Online Article Text |
id | pubmed-7466460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74664602020-09-14 Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells Al-Kattan, Ahmed M. A. Ali, Lamiaa Daurat, Morgane Mattana, Elodie Gary-Bobo, Magali Nanomaterials (Basel) Article Driven by their distinctive physiological activities, biological properties and unique theranostic modalities, silicon nanoparticles (SiNPs) are one of the promising materials for the development of novel multifunctional nanoplatforms for biomedical applications. In this work, we assessed the possibility to use laser-synthesized Si NPs as photosensitizers in two-photon excited photodynamic therapy (TPE-PDT) modality. Herein, we used an easy strategy to synthesize ultraclean and monodispersed SiNPs using laser ablation and fragmentation sequences of silicon wafer in aqueous solution, which prevent any specific purification step. Structural analysis revealed the spherical shape of the nanoparticles with a narrow size distribution centered at the mean size diameter of 62 nm ± 0.42 nm, while the negative surface charge of −40 ± 0.3 mV ensured a great stability without sedimentation over a long period of time. In vitro studies on human cancer cell lines (breast and liver) and healthy cells revealed their low cytotoxicity without any light stimulus and their therapeutic potential under TPE-PDT mode at 900 nm with a promising cell death of 45% in case of MCF-7 breast cancer cells, as a consequence of intracellular reactive oxygen species release. Their luminescence emission inside the cells was clearly observed at UV-Vis region. Compared to Si nanoparticles synthesized via chemical routes, which are often linked to additional modules with photochemical and photobiological properties to boost photodynamic effect, laser-synthesized SiNPs exhibit promising intrinsic therapeutic and imaging properties to develop advanced strategy in nanomedicine field. MDPI 2020-07-26 /pmc/articles/PMC7466460/ /pubmed/32722568 http://dx.doi.org/10.3390/nano10081462 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al-Kattan, Ahmed M. A. Ali, Lamiaa Daurat, Morgane Mattana, Elodie Gary-Bobo, Magali Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title | Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title_full | Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title_fullStr | Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title_full_unstemmed | Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title_short | Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells |
title_sort | biological assessment of laser-synthesized silicon nanoparticles effect in two-photon photodynamic therapy on breast cancer mcf-7 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466460/ https://www.ncbi.nlm.nih.gov/pubmed/32722568 http://dx.doi.org/10.3390/nano10081462 |
work_keys_str_mv | AT alkattanahmed biologicalassessmentoflasersynthesizedsiliconnanoparticleseffectintwophotonphotodynamictherapyonbreastcancermcf7cells AT maalilamiaa biologicalassessmentoflasersynthesizedsiliconnanoparticleseffectintwophotonphotodynamictherapyonbreastcancermcf7cells AT dauratmorgane biologicalassessmentoflasersynthesizedsiliconnanoparticleseffectintwophotonphotodynamictherapyonbreastcancermcf7cells AT mattanaelodie biologicalassessmentoflasersynthesizedsiliconnanoparticleseffectintwophotonphotodynamictherapyonbreastcancermcf7cells AT garybobomagali biologicalassessmentoflasersynthesizedsiliconnanoparticleseffectintwophotonphotodynamictherapyonbreastcancermcf7cells |