Cargando…
Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes
A nanostructured hybrid material consisting of TiO(2) nanoparticles grown and stabilized on graphene oxide (GO) platelets, was synthesized and tested as nanofiller in a polymeric matrix of sulfonated polysulfone (sPSU) for the preparation of new and low-cost nanocomposite electrolytes for proton exc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466480/ https://www.ncbi.nlm.nih.gov/pubmed/32785158 http://dx.doi.org/10.3390/nano10081572 |
_version_ | 1783577823791808512 |
---|---|
author | Simari, Cataldo Lufrano, Ernestino Godbert, Nicolas Gournis, Dimitrios Coppola, Luigi Nicotera, Isabella |
author_facet | Simari, Cataldo Lufrano, Ernestino Godbert, Nicolas Gournis, Dimitrios Coppola, Luigi Nicotera, Isabella |
author_sort | Simari, Cataldo |
collection | PubMed |
description | A nanostructured hybrid material consisting of TiO(2) nanoparticles grown and stabilized on graphene oxide (GO) platelets, was synthesized and tested as nanofiller in a polymeric matrix of sulfonated polysulfone (sPSU) for the preparation of new and low-cost nanocomposite electrolytes for proton exchange membrane fuel cell (PEMFC) applications. GO-TiO(2) hybrid material combines the nanoscale structure, large interfacial area, and mechanical features of a 2D, layered material, and the hygroscopicity properties of ceramic oxides, able to maintain a suitable hydration of the membrane under harsh fuel cell operative conditions. GO-TiO(2) was synthetized through a new, simple, one-pot hydrothermal procedure, while nanocomposite membranes were prepared by casting using different filler loadings. Both material and membranes were investigated by a combination of XRD, Raman, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while extensive studies on the proton transport properties were carried out by Electrochemical Impedance Spectroscopy (EIS) measurements and pulse field gradient (PFG) NMR spectroscopy. The addition of GO-TiO(2) to the sPSU produced a highly stable network, with an increasing of the storage modulus three-fold higher than the filler-free sPSU membrane. Moreover, the composite membrane with 3 wt.% of filler content demonstrated very high water-retention capacity at high temperatures as well as a remarkable proton mobility, especially in very low relative humidity conditions, marking a step ahead of the state of the art in PEMs. This suggests that an architecture between polymer and filler was created with interconnected routes for an efficient proton transport. |
format | Online Article Text |
id | pubmed-7466480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74664802020-09-14 Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes Simari, Cataldo Lufrano, Ernestino Godbert, Nicolas Gournis, Dimitrios Coppola, Luigi Nicotera, Isabella Nanomaterials (Basel) Article A nanostructured hybrid material consisting of TiO(2) nanoparticles grown and stabilized on graphene oxide (GO) platelets, was synthesized and tested as nanofiller in a polymeric matrix of sulfonated polysulfone (sPSU) for the preparation of new and low-cost nanocomposite electrolytes for proton exchange membrane fuel cell (PEMFC) applications. GO-TiO(2) hybrid material combines the nanoscale structure, large interfacial area, and mechanical features of a 2D, layered material, and the hygroscopicity properties of ceramic oxides, able to maintain a suitable hydration of the membrane under harsh fuel cell operative conditions. GO-TiO(2) was synthetized through a new, simple, one-pot hydrothermal procedure, while nanocomposite membranes were prepared by casting using different filler loadings. Both material and membranes were investigated by a combination of XRD, Raman, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while extensive studies on the proton transport properties were carried out by Electrochemical Impedance Spectroscopy (EIS) measurements and pulse field gradient (PFG) NMR spectroscopy. The addition of GO-TiO(2) to the sPSU produced a highly stable network, with an increasing of the storage modulus three-fold higher than the filler-free sPSU membrane. Moreover, the composite membrane with 3 wt.% of filler content demonstrated very high water-retention capacity at high temperatures as well as a remarkable proton mobility, especially in very low relative humidity conditions, marking a step ahead of the state of the art in PEMs. This suggests that an architecture between polymer and filler was created with interconnected routes for an efficient proton transport. MDPI 2020-08-10 /pmc/articles/PMC7466480/ /pubmed/32785158 http://dx.doi.org/10.3390/nano10081572 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Simari, Cataldo Lufrano, Ernestino Godbert, Nicolas Gournis, Dimitrios Coppola, Luigi Nicotera, Isabella Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title | Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title_full | Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title_fullStr | Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title_full_unstemmed | Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title_short | Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes |
title_sort | titanium dioxide grafted on graphene oxide: hybrid nanofiller for effective and low-cost proton exchange membranes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466480/ https://www.ncbi.nlm.nih.gov/pubmed/32785158 http://dx.doi.org/10.3390/nano10081572 |
work_keys_str_mv | AT simaricataldo titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes AT lufranoernestino titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes AT godbertnicolas titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes AT gournisdimitrios titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes AT coppolaluigi titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes AT nicoteraisabella titaniumdioxidegraftedongrapheneoxidehybridnanofillerforeffectiveandlowcostprotonexchangemembranes |