Cargando…
The synergistic hepatoprotective potential of Beta vulgaris juice and 2,3- dimercaptosuccinic acid in lead-intoxicated rats via improving the hepatic oxidative and inflammatory stress
BACKGROUND: Lead (Pb) is observed in all areas of the environment, mainly derived from human operations such as mining, processing, and burning fossil fuels. Pb toxicity is one of the most prevalent causes of human hepatotoxicity. The available chelator drugs used now have many adverse effects and t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466492/ https://www.ncbi.nlm.nih.gov/pubmed/32873301 http://dx.doi.org/10.1186/s12906-020-03056-6 |
Sumario: | BACKGROUND: Lead (Pb) is observed in all areas of the environment, mainly derived from human operations such as mining, processing, and burning fossil fuels. Pb toxicity is one of the most prevalent causes of human hepatotoxicity. The available chelator drugs used now have many adverse effects and therefore the world is looking for natural and secure alternatives. METHODS: Here, we evaluated the hepatoprotective role of the oral administration (1 g/kg b.w.) of the lyophilized Beta vulgaris juice (BVJ) against Pb-induced rat hepatotoxicity. We also examined the possible synergistic hepatoprotective impact of the combination between BVJ and 2,3- dimercaptosuccinic acid (DMSA, the currently approved drug for Pb-toxicity). The evaluation depends on the ability of BVJ, DMSA, or their combination (BVJ-DMSA) to reduce serum and hepatic Pb level and to avoid oxidative stress and inflammation caused by Pb. The level of lipid peroxidation, reduced glutathione (GSH), total antioxidant capacity, and the activity of the antioxidant enzymes were quantified. In addition, the level of interleukin (IL)-6, nitric oxide (NO), DNA fragmentation, and liver histology were studied. RESULTS: The results showed that BVJ contained considerable amounts of betalains, vitamin C, and various types of phenolic compounds. Therefore, BVJ displayed a significant (p < 0.05) preventive influence on the elevation of Pb levels in blood and liver as well as the hepatic DNA fragmentation. In addition, it significantly (p < 0.05) improved most of the studied antioxidant and inflammatory markers in the Pb-intoxicated rats. However, the combined extract (BVJ-DMSA) revealed synergistic (combination index < 1) activities in most of the tested parameters. The histopathological results verified the biochemical findings of this research. CONCLUSION: BVJ has a potent efficiency in the protection from Pb-induced hepatotoxicity through the reduction of its accumulation in blood and liver and the prevention of the oxidative stress and inflammation induced by Pb. Additionally, the treatment of hepatotoxicity with BVJ and DMSA in combination showed a synergistic effect and reduced the adverse effects induced by DMSA. Thus, BVJ can be a promising hepatoprotective extract against lead toxicity and its combination with DMSA potentiates this effect. |
---|