Cargando…
Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration
We describe the performance of graphene oxide (GO) membranes stabilized by crosslinkers and supported on polyethersulfone films in the dehydration of ethanol in a continuous cross-flow pervaporation set-up. We used two crosslinker species with branched structures (humic acid-like substances derived...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466621/ https://www.ncbi.nlm.nih.gov/pubmed/32785060 http://dx.doi.org/10.3390/nano10081571 |
Sumario: | We describe the performance of graphene oxide (GO) membranes stabilized by crosslinkers and supported on polyethersulfone films in the dehydration of ethanol in a continuous cross-flow pervaporation set-up. We used two crosslinker species with branched structures (humic acid-like substances derived from urban waste and a synthetic hyperbranched polyol). The supported crosslinked GO films were prepared by rod coating on a polyethersulfone ultrafiltration membrane. Pervaporation experiments were carried out at temperatures of 40, 50, 60 and 70 °C. When the feed comprised pure water and ethanol, a much higher flux of water than ethanol was observed at all temperatures through GO films stabilized by the two crosslinkers (humic acid, GO-HAL, and the synthetic hyperbranched polyol, GO-HBPO), indicating the separation ability of these crosslinked membranes. For feed mixtures of water and ethanol, the GO-HAL and GO-HBPO membranes showed good separation performances by producing permeates with a significantly higher water content than the feed at all temperatures. |
---|