Cargando…

Muscular involvement and tendon contracture in limb-girdle muscular dystrophy 2Y: a mild adult phenotype and literature review

BACKGROUND: Limb girdle muscular dystrophy type 2Y (LGMD2Y) is a rare subgroup of limb girdle muscular dystrophy featuring limb-girdle weakness, tendon contracture and cardiac involvement. It is caused by the mutation of TOR1AIP1, which encodes nuclear membrane protein LAP1 (lamina-associated polype...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xuelin, Wu, Jinlang, Xian, Wenbiao, Liao, Bing, Liao, Songjie, Yao, Xiaoli, Zhang, Weixi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466787/
https://www.ncbi.nlm.nih.gov/pubmed/32873274
http://dx.doi.org/10.1186/s12891-020-03616-4
Descripción
Sumario:BACKGROUND: Limb girdle muscular dystrophy type 2Y (LGMD2Y) is a rare subgroup of limb girdle muscular dystrophy featuring limb-girdle weakness, tendon contracture and cardiac involvement. It is caused by the mutation of TOR1AIP1, which encodes nuclear membrane protein LAP1 (lamina-associated polypeptide 1) and comprises heterogeneous phenotypes. The present study reported a patient with a novel homozygous TOR1AIP1 mutation that presented with selective muscle weakness, which further expanded the phenotype of LGMD2Y- and TOR1AIP1-associated nuclear envelopathies. CASE PRESENTATION: A 40-year-old male presented with Achilles tendon contracture and muscle weakness that bothered him from 8 years old. While the strength of his distal and proximal upper limbs was severely impaired, the function of his lower limbs was relatively spared. Muscle pathology showed dystrophic features, and electron microscopy showed ultrastructural abnormalities of disrupted muscle nuclei envelopes. Whole-exome sequencing showed a frameshift mutation in TOR1AIP1 (c.98dupC). CONCLUSION: We reported a novel mild phenotype of LGMD2Y with relatively selective distal upper limb weakness and joint contracture and revealed the heterogeneity of LGDM2Y and the role of the LAP1 isoform by literature review.