Cargando…

Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells

BACKGROUND: Drug resistance is a major problem in the treatment of leukemia with doxorubicin (Dox), and the erythroblastosis virus E26 oncogene homolog 1 (ETS1) gene is associated with drug resistance. Olmutinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Jiansheng, Zhang, Jinli, Yu, Xiaoyang, Zhang, Xing, Dian, Linping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466836/
https://www.ncbi.nlm.nih.gov/pubmed/32830792
http://dx.doi.org/10.12659/MSM.924922
_version_ 1783577901147357184
author Zhong, Jiansheng
Zhang, Jinli
Yu, Xiaoyang
Zhang, Xing
Dian, Linping
author_facet Zhong, Jiansheng
Zhang, Jinli
Yu, Xiaoyang
Zhang, Xing
Dian, Linping
author_sort Zhong, Jiansheng
collection PubMed
description BACKGROUND: Drug resistance is a major problem in the treatment of leukemia with doxorubicin (Dox), and the erythroblastosis virus E26 oncogene homolog 1 (ETS1) gene is associated with drug resistance. Olmutinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) reported to play a role in reversing multidrug resistance (MDR) in cancer cells. The objective of this study was to investigate whether olmutinib could reverse Dox resistance in leukemia cells overexpressing ETS1. MATERIAL/METHODS: Human chronic myelogenous leukemia cell line K562 and its Dox-resistant cell line K562/ADR were used. Western blot and qPCR detected the expression of ETS1 and ABCB1. Cell proliferation was measured by cell counting kit-8 and methyl thiazolyl tetrazolium. Cell apoptosis was observed by western blot and flow cytometry. A nude mice K562/ADR xenograft model was used to investigate the inhibitory effects of olmutinib on tumor growth in vivo. RESULTS: The mRNA and protein expressions of ETS1 and ABCB1 were up-regulated in Dox-resistant leukemia cell line K562/ADR. We overexpressed ETS1 in both cell lines, finding that olmutinib inhibited the cell viability of K562 and K562/ADR in a concentration-dependent manner. The cytotoxicity of Dox to EST1-overexpressing K562/ADR cells was enhanced by olmutinib. Olmutinib also promoted apoptosis of K562 and K562/ADR cells compared with Dox treatment alone. In vivo, olmutinib enhanced the inhibitory effects of Dox on ETS1-overexpressing K562/ADR cell xenograft growth. CONCLUSIONS: Our results suggest that the novel EGFR TKI olmutinib enhances the sensitivity of ETS1-overexpressing leukemia cells to Dox.
format Online
Article
Text
id pubmed-7466836
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-74668362020-09-04 Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells Zhong, Jiansheng Zhang, Jinli Yu, Xiaoyang Zhang, Xing Dian, Linping Med Sci Monit Lab/In Vitro Research BACKGROUND: Drug resistance is a major problem in the treatment of leukemia with doxorubicin (Dox), and the erythroblastosis virus E26 oncogene homolog 1 (ETS1) gene is associated with drug resistance. Olmutinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) reported to play a role in reversing multidrug resistance (MDR) in cancer cells. The objective of this study was to investigate whether olmutinib could reverse Dox resistance in leukemia cells overexpressing ETS1. MATERIAL/METHODS: Human chronic myelogenous leukemia cell line K562 and its Dox-resistant cell line K562/ADR were used. Western blot and qPCR detected the expression of ETS1 and ABCB1. Cell proliferation was measured by cell counting kit-8 and methyl thiazolyl tetrazolium. Cell apoptosis was observed by western blot and flow cytometry. A nude mice K562/ADR xenograft model was used to investigate the inhibitory effects of olmutinib on tumor growth in vivo. RESULTS: The mRNA and protein expressions of ETS1 and ABCB1 were up-regulated in Dox-resistant leukemia cell line K562/ADR. We overexpressed ETS1 in both cell lines, finding that olmutinib inhibited the cell viability of K562 and K562/ADR in a concentration-dependent manner. The cytotoxicity of Dox to EST1-overexpressing K562/ADR cells was enhanced by olmutinib. Olmutinib also promoted apoptosis of K562 and K562/ADR cells compared with Dox treatment alone. In vivo, olmutinib enhanced the inhibitory effects of Dox on ETS1-overexpressing K562/ADR cell xenograft growth. CONCLUSIONS: Our results suggest that the novel EGFR TKI olmutinib enhances the sensitivity of ETS1-overexpressing leukemia cells to Dox. International Scientific Literature, Inc. 2020-08-24 /pmc/articles/PMC7466836/ /pubmed/32830792 http://dx.doi.org/10.12659/MSM.924922 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Lab/In Vitro Research
Zhong, Jiansheng
Zhang, Jinli
Yu, Xiaoyang
Zhang, Xing
Dian, Linping
Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title_full Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title_fullStr Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title_full_unstemmed Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title_short Olmutinib Reverses Doxorubicin Resistance in ETS1-Overexpressing Leukemia Cells
title_sort olmutinib reverses doxorubicin resistance in ets1-overexpressing leukemia cells
topic Lab/In Vitro Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466836/
https://www.ncbi.nlm.nih.gov/pubmed/32830792
http://dx.doi.org/10.12659/MSM.924922
work_keys_str_mv AT zhongjiansheng olmutinibreversesdoxorubicinresistanceinets1overexpressingleukemiacells
AT zhangjinli olmutinibreversesdoxorubicinresistanceinets1overexpressingleukemiacells
AT yuxiaoyang olmutinibreversesdoxorubicinresistanceinets1overexpressingleukemiacells
AT zhangxing olmutinibreversesdoxorubicinresistanceinets1overexpressingleukemiacells
AT dianlinping olmutinibreversesdoxorubicinresistanceinets1overexpressingleukemiacells