Cargando…

Effect of (Mis)Matched Compression Speed on Speech Recognition in Bimodal Listeners

Automatic gain control (AGC) compresses the wide dynamic range of sounds to the narrow dynamic range of hearing-impaired listeners. Setting AGC parameters (time constants and knee points) is an important part of the fitting of hearing devices. These parameters do not only influence overall loudness...

Descripción completa

Detalles Bibliográficos
Autores principales: Spirrov, Dimitar, Kludt, Eugen, Verschueren, Eline, Büchner, Andreas, Francart, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466877/
https://www.ncbi.nlm.nih.gov/pubmed/32865486
http://dx.doi.org/10.1177/2331216520948974
Descripción
Sumario:Automatic gain control (AGC) compresses the wide dynamic range of sounds to the narrow dynamic range of hearing-impaired listeners. Setting AGC parameters (time constants and knee points) is an important part of the fitting of hearing devices. These parameters do not only influence overall loudness elicited by the hearing devices but can also affect the recognition of speech in noise. We investigated whether matching knee points and time constants of the AGC between the cochlear implant and the hearing aid of bimodal listeners would improve speech recognition in noise. We recruited 18 bimodal listeners and provided them all with the same cochlear-implant processor and hearing aid. We compared the matched AGCs with the default device settings with mismatched AGCs. As a baseline, we also included a condition with the mismatched AGCs of the participants’ own devices. We tested speech recognition in quiet and in noise presented from different directions. The time constants affected outcomes in the monaural testing condition with the cochlear implant alone. There were no specific binaural performance differences between the two AGC settings. Therefore, the performance was mostly dependent on the monaural cochlear implant alone condition.