Cargando…

Fractional order mathematical modeling of COVID-19 transmission

In this article, the mathematical model with different compartments for the transmission dynamics of coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results regarding the existence of at least one solution through fixed point results are derived. Then for t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Shabir, Ullah, Aman, Al-Mdallal, Qasem M., Khan, Hasib, Shah, Kamal, Khan, Aziz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466947/
https://www.ncbi.nlm.nih.gov/pubmed/32905156
http://dx.doi.org/10.1016/j.chaos.2020.110256
Descripción
Sumario:In this article, the mathematical model with different compartments for the transmission dynamics of coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results regarding the existence of at least one solution through fixed point results are derived. Then for the concerned approximate solution, the modified Euler method for fractional-order differential equations (FODEs) is utilized. Initially, we simulate the results by using some available data for different fractional-order to show the appropriateness of the proposed method. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.