Cargando…
The SEM-4 Transcription Factor Is Required for Regulation of the Oxidative Stress Response in Caenorhabditis elegans
Oxidative stress causes damage to cells by creating reactive oxygen species (ROS) and the overproduction of ROS have been linked to the onset of premature aging. We previously found that a brap-2 (BRCA1 associated protein 2) mutant significantly increases the expression of phase II detoxification en...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466988/ https://www.ncbi.nlm.nih.gov/pubmed/32718932 http://dx.doi.org/10.1534/g3.120.401316 |
Sumario: | Oxidative stress causes damage to cells by creating reactive oxygen species (ROS) and the overproduction of ROS have been linked to the onset of premature aging. We previously found that a brap-2 (BRCA1 associated protein 2) mutant significantly increases the expression of phase II detoxification enzymes in C. elegans. An RNAi suppression screen to identify transcription factors involved in the production of gst-4 mRNA in brap-2 worms identified SEM-4 as a potential candidate. Here, we show that knockdown of sem-4 suppresses the activation of gst-4 caused by the mutation in brap-2. We also demonstrate that sem-4 is required for survival upon exposure to oxidative stress and that SEM-4 is required for expression of the transcription factor SKN-1C. These findings identify a novel role for SEM-4 in ROS detoxification by regulating expression of SKN-1C and the phase II detoxification genes. |
---|