Cargando…
The spleen mediates chronic sleep restriction-mediated enhancement of LPS-induced neuroinflammation, cognitive deficits, and anxiety-like behavior
Chronic sleep restriction promotes neuroinflammation and cognitive deficits in neurodegenerative and neurobehavioral diseases. The spleens of mice exposed to chronic and repeated psychological stress serve as a reservoir of inflammatory myeloid cells that are released into the blood and brain follow...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467362/ https://www.ncbi.nlm.nih.gov/pubmed/32741775 http://dx.doi.org/10.18632/aging.103659 |
Sumario: | Chronic sleep restriction promotes neuroinflammation and cognitive deficits in neurodegenerative and neurobehavioral diseases. The spleens of mice exposed to chronic and repeated psychological stress serve as a reservoir of inflammatory myeloid cells that are released into the blood and brain following secondary acute stress. Here, we tested whether chronic and repeated short-term sleep restriction (CRSR) would exacerbate lipopolysaccharide (LPS)-induced neuroinflammation, cognitive deficits, and anxiety-like behavior in a spleen-dependent manner. LPS was administered to aged mice 14 days after exposure to CRSR consisting of three cycles of 7 days of sleep restriction with 7-day intervals in between. CRSR increased plasma proinflammatory cytokine levels, blood-brain barrier permeability, hippocampal proinflammatory cytokine levels, and transition of microglia to the M1 phenotype 24 h after LPS treatment. This in turn led to cognitive deficits and anxiety-like behavior. Interestingly, removal of the spleen 14 days prior to CRSR abrogated the enhancement of LPS-induced increases in systemic inflammation, neuroinflammation, cognitive deficits, and anxiety-like behavior. These data indicate that the spleen was essential for CRSR-induced exacerbation of LPS-induced brain damage. |
---|