Cargando…

Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo

[Image: see text] Accelerated de novo formation of bone is a highly desirable aim of implants targeting musculoskeletal injuries. To date, this has primarily been addressed by biologic factors. However, there is an unmet need for robust, highly reproducible yet economic alternative strategies that s...

Descripción completa

Detalles Bibliográficos
Autores principales: Greer, Andrew I.M., Goriainov, Vitali, Kanczler, Janos, Black, Cameron R.M., Turner, Lesley-Anne, Meek, Robert M.D., Burgess, Karl, MacLaren, Ian, Dalby, Matthew J., Oreffo, Richard O.C., Gadegaard, Nikolaj
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467557/
https://www.ncbi.nlm.nih.gov/pubmed/32633478
http://dx.doi.org/10.1021/acsami.0c10273
_version_ 1783578038651322368
author Greer, Andrew I.M.
Goriainov, Vitali
Kanczler, Janos
Black, Cameron R.M.
Turner, Lesley-Anne
Meek, Robert M.D.
Burgess, Karl
MacLaren, Ian
Dalby, Matthew J.
Oreffo, Richard O.C.
Gadegaard, Nikolaj
author_facet Greer, Andrew I.M.
Goriainov, Vitali
Kanczler, Janos
Black, Cameron R.M.
Turner, Lesley-Anne
Meek, Robert M.D.
Burgess, Karl
MacLaren, Ian
Dalby, Matthew J.
Oreffo, Richard O.C.
Gadegaard, Nikolaj
author_sort Greer, Andrew I.M.
collection PubMed
description [Image: see text] Accelerated de novo formation of bone is a highly desirable aim of implants targeting musculoskeletal injuries. To date, this has primarily been addressed by biologic factors. However, there is an unmet need for robust, highly reproducible yet economic alternative strategies that strongly induce an osteogenic cell response. Here, we present a surface engineering method of translating bioactive nanopatterns from polymeric in vitro studies to clinically relevant material for orthopedics: three-dimensional, large area metal. We use a titanium-based sol–gel whereby metal implants can be engineered to induce osteoinduction both in vitro and in vivo. We show that controlled disordered nanotopographies presented as pillars with 15–25 nm height and 100 nm diameter on titanium dioxide effectively induce osteogenesis when seeded with STRO-1-enriched human skeletal stem cells in vivo subcutaneous implantation in mice. After 28 days, samples were retrieved, which showed a 20-fold increase in osteogenic gene induction of nanopatterned substrates, indicating that the sol–gel nanopatterning method offers a promising route for translation to future clinical orthopedic implants.
format Online
Article
Text
id pubmed-7467557
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74675572020-09-03 Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo Greer, Andrew I.M. Goriainov, Vitali Kanczler, Janos Black, Cameron R.M. Turner, Lesley-Anne Meek, Robert M.D. Burgess, Karl MacLaren, Ian Dalby, Matthew J. Oreffo, Richard O.C. Gadegaard, Nikolaj ACS Appl Mater Interfaces [Image: see text] Accelerated de novo formation of bone is a highly desirable aim of implants targeting musculoskeletal injuries. To date, this has primarily been addressed by biologic factors. However, there is an unmet need for robust, highly reproducible yet economic alternative strategies that strongly induce an osteogenic cell response. Here, we present a surface engineering method of translating bioactive nanopatterns from polymeric in vitro studies to clinically relevant material for orthopedics: three-dimensional, large area metal. We use a titanium-based sol–gel whereby metal implants can be engineered to induce osteoinduction both in vitro and in vivo. We show that controlled disordered nanotopographies presented as pillars with 15–25 nm height and 100 nm diameter on titanium dioxide effectively induce osteogenesis when seeded with STRO-1-enriched human skeletal stem cells in vivo subcutaneous implantation in mice. After 28 days, samples were retrieved, which showed a 20-fold increase in osteogenic gene induction of nanopatterned substrates, indicating that the sol–gel nanopatterning method offers a promising route for translation to future clinical orthopedic implants. American Chemical Society 2020-07-06 2020-07-29 /pmc/articles/PMC7467557/ /pubmed/32633478 http://dx.doi.org/10.1021/acsami.0c10273 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Greer, Andrew I.M.
Goriainov, Vitali
Kanczler, Janos
Black, Cameron R.M.
Turner, Lesley-Anne
Meek, Robert M.D.
Burgess, Karl
MacLaren, Ian
Dalby, Matthew J.
Oreffo, Richard O.C.
Gadegaard, Nikolaj
Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title_full Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title_fullStr Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title_full_unstemmed Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title_short Nanopatterned Titanium Implants Accelerate Bone Formation In Vivo
title_sort nanopatterned titanium implants accelerate bone formation in vivo
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467557/
https://www.ncbi.nlm.nih.gov/pubmed/32633478
http://dx.doi.org/10.1021/acsami.0c10273
work_keys_str_mv AT greerandrewim nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT goriainovvitali nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT kanczlerjanos nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT blackcameronrm nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT turnerlesleyanne nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT meekrobertmd nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT burgesskarl nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT maclarenian nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT dalbymatthewj nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT orefforichardoc nanopatternedtitaniumimplantsaccelerateboneformationinvivo
AT gadegaardnikolaj nanopatternedtitaniumimplantsaccelerateboneformationinvivo