Cargando…

Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors

[Image: see text] Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance int...

Descripción completa

Detalles Bibliográficos
Autores principales: Nugraha, Mohamad I., Yarali, Emre, Firdaus, Yuliar, Lin, Yuanbao, El-Labban, Abdulrahman, Gedda, Murali, Lidorikis, Elefterios, Yengel, Emre, Faber, Hendrik, Anthopoulos, Thomas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467567/
https://www.ncbi.nlm.nih.gov/pubmed/32564590
http://dx.doi.org/10.1021/acsami.0c06306
_version_ 1783578041038929920
author Nugraha, Mohamad I.
Yarali, Emre
Firdaus, Yuliar
Lin, Yuanbao
El-Labban, Abdulrahman
Gedda, Murali
Lidorikis, Elefterios
Yengel, Emre
Faber, Hendrik
Anthopoulos, Thomas D.
author_facet Nugraha, Mohamad I.
Yarali, Emre
Firdaus, Yuliar
Lin, Yuanbao
El-Labban, Abdulrahman
Gedda, Murali
Lidorikis, Elefterios
Yengel, Emre
Faber, Hendrik
Anthopoulos, Thomas D.
author_sort Nugraha, Mohamad I.
collection PubMed
description [Image: see text] Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO(2) as the gate dielectric exhibit a maximum electron mobility of 0.2 cm(2) V(–1) s(–1), a value higher than that of control transistors (≈10(–2) cm(2) V(–1) s(–1)) processed via thermal annealing for 30 min at 120 °C. Replacing SiO(2) with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm(2) V(–1) s(–1). The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.
format Online
Article
Text
id pubmed-7467567
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74675672020-09-03 Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors Nugraha, Mohamad I. Yarali, Emre Firdaus, Yuliar Lin, Yuanbao El-Labban, Abdulrahman Gedda, Murali Lidorikis, Elefterios Yengel, Emre Faber, Hendrik Anthopoulos, Thomas D. ACS Appl Mater Interfaces [Image: see text] Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO(2) as the gate dielectric exhibit a maximum electron mobility of 0.2 cm(2) V(–1) s(–1), a value higher than that of control transistors (≈10(–2) cm(2) V(–1) s(–1)) processed via thermal annealing for 30 min at 120 °C. Replacing SiO(2) with a polymeric dielectric improves the transistor’s channel interface, leading to a significant increase in electron mobility to 3.7 cm(2) V(–1) s(–1). The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits. American Chemical Society 2020-06-22 2020-07-15 /pmc/articles/PMC7467567/ /pubmed/32564590 http://dx.doi.org/10.1021/acsami.0c06306 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Nugraha, Mohamad I.
Yarali, Emre
Firdaus, Yuliar
Lin, Yuanbao
El-Labban, Abdulrahman
Gedda, Murali
Lidorikis, Elefterios
Yengel, Emre
Faber, Hendrik
Anthopoulos, Thomas D.
Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title_full Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title_fullStr Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title_full_unstemmed Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title_short Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors
title_sort rapid photonic processing of high-electron-mobility pbs colloidal quantum dot transistors
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467567/
https://www.ncbi.nlm.nih.gov/pubmed/32564590
http://dx.doi.org/10.1021/acsami.0c06306
work_keys_str_mv AT nugrahamohamadi rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT yaraliemre rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT firdausyuliar rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT linyuanbao rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT ellabbanabdulrahman rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT geddamurali rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT lidorikiselefterios rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT yengelemre rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT faberhendrik rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors
AT anthopoulosthomasd rapidphotonicprocessingofhighelectronmobilitypbscolloidalquantumdottransistors