Cargando…

Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide

[Image: see text] While seeded growth of quasi-spherical colloidal Au nanoparticles (NPs) has been extensively explored in the literature, the growth of surface supported arrays of such particles has received less attention. The latter scenario offers some significant challenges, including the attai...

Descripción completa

Detalles Bibliográficos
Autores principales: Landeke-Wilsmark, Björn, Nyholm, Leif, Hägglund, Carl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467740/
https://www.ncbi.nlm.nih.gov/pubmed/32531167
http://dx.doi.org/10.1021/acs.langmuir.0c00374
_version_ 1783578078724751360
author Landeke-Wilsmark, Björn
Nyholm, Leif
Hägglund, Carl
author_facet Landeke-Wilsmark, Björn
Nyholm, Leif
Hägglund, Carl
author_sort Landeke-Wilsmark, Björn
collection PubMed
description [Image: see text] While seeded growth of quasi-spherical colloidal Au nanoparticles (NPs) has been extensively explored in the literature, the growth of surface supported arrays of such particles has received less attention. The latter scenario offers some significant challenges, including the attainment of sufficient particle-substrate adhesion, growth-selectivity, and uniform mass-transport. To this end, a reaction system consisting of HAuCl(4), citrate, and H(2)O(2) is here investigated for the growth of supported arrays of 10 nm Au seeds, derived via block copolymer (BCP) lithography. The effects of the reagent concentrations on the properties of the resultant NPs are evaluated. It is found that inclusion of citrate in the growth medium causes substantial particle desorption from Si surfaces. However, the presence of citrate also yields NPs with more uniformly circular top-view cross sections (“quasi-circular”), motivating the exploration of particle immobilization methods. We demonstrate that atomic layer deposition (ALD) of a single cycle of HfO(2) (∼1 Å), after the seed particle formation, promotes adhesion sufficiently to enable the use of citrate without the added oxide noticeably affecting the shape of the resultant NPs. The presented ALD-based approach differs from the conventional sequence of depositing the adhesion layer prior to the seed particle formation and may have advantages in various processing schemes, such as when surface grafting of brush layers is required in the BCP lithography process. A proof-of-concept is provided for the growth of large-area arrays of supported “quasi-circular” Au NPs, in a rapid one-step process at room temperature.
format Online
Article
Text
id pubmed-7467740
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74677402020-09-03 Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide Landeke-Wilsmark, Björn Nyholm, Leif Hägglund, Carl Langmuir [Image: see text] While seeded growth of quasi-spherical colloidal Au nanoparticles (NPs) has been extensively explored in the literature, the growth of surface supported arrays of such particles has received less attention. The latter scenario offers some significant challenges, including the attainment of sufficient particle-substrate adhesion, growth-selectivity, and uniform mass-transport. To this end, a reaction system consisting of HAuCl(4), citrate, and H(2)O(2) is here investigated for the growth of supported arrays of 10 nm Au seeds, derived via block copolymer (BCP) lithography. The effects of the reagent concentrations on the properties of the resultant NPs are evaluated. It is found that inclusion of citrate in the growth medium causes substantial particle desorption from Si surfaces. However, the presence of citrate also yields NPs with more uniformly circular top-view cross sections (“quasi-circular”), motivating the exploration of particle immobilization methods. We demonstrate that atomic layer deposition (ALD) of a single cycle of HfO(2) (∼1 Å), after the seed particle formation, promotes adhesion sufficiently to enable the use of citrate without the added oxide noticeably affecting the shape of the resultant NPs. The presented ALD-based approach differs from the conventional sequence of depositing the adhesion layer prior to the seed particle formation and may have advantages in various processing schemes, such as when surface grafting of brush layers is required in the BCP lithography process. A proof-of-concept is provided for the growth of large-area arrays of supported “quasi-circular” Au NPs, in a rapid one-step process at room temperature. American Chemical Society 2020-06-12 2020-06-23 /pmc/articles/PMC7467740/ /pubmed/32531167 http://dx.doi.org/10.1021/acs.langmuir.0c00374 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Landeke-Wilsmark, Björn
Nyholm, Leif
Hägglund, Carl
Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title_full Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title_fullStr Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title_full_unstemmed Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title_short Seeded Growth of Large-Area Arrays of Substrate Supported Au Nanoparticles Using Citrate and Hydrogen Peroxide
title_sort seeded growth of large-area arrays of substrate supported au nanoparticles using citrate and hydrogen peroxide
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467740/
https://www.ncbi.nlm.nih.gov/pubmed/32531167
http://dx.doi.org/10.1021/acs.langmuir.0c00374
work_keys_str_mv AT landekewilsmarkbjorn seededgrowthoflargeareaarraysofsubstratesupportedaunanoparticlesusingcitrateandhydrogenperoxide
AT nyholmleif seededgrowthoflargeareaarraysofsubstratesupportedaunanoparticlesusingcitrateandhydrogenperoxide
AT hagglundcarl seededgrowthoflargeareaarraysofsubstratesupportedaunanoparticlesusingcitrateandhydrogenperoxide