Cargando…
Interplay between Viscoelasticity and Force Rate Affects Sequential Unfolding in Polyproteins Pulled at Constant Velocity
[Image: see text] Polyproteins are unique constructs, comprised of folded protein domains in tandem and polymeric linkers. These macromolecules perform under biological stresses by modulating their response through partial unfolding and extending. Although these unfolding events are considered indep...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467765/ https://www.ncbi.nlm.nih.gov/pubmed/32905266 http://dx.doi.org/10.1021/acs.macromol.0c00278 |
_version_ | 1783578083843899392 |
---|---|
author | Elias-Mordechai, Moran Chetrit, Einat Berkovich, Ronen |
author_facet | Elias-Mordechai, Moran Chetrit, Einat Berkovich, Ronen |
author_sort | Elias-Mordechai, Moran |
collection | PubMed |
description | [Image: see text] Polyproteins are unique constructs, comprised of folded protein domains in tandem and polymeric linkers. These macromolecules perform under biological stresses by modulating their response through partial unfolding and extending. Although these unfolding events are considered independent, a history dependence of forced unfolding within polyproteins was reported. Here we measure the unfolding of single poly(I91) octamers, complemented with Brownian dynamics simulations, displaying increasing hierarchy in unfolding-foces, accompanied by a decrease in the effective stiffness. This counters the existing understanding that relates stiffness with variations in domain size and probe stiffness, which is expected to reduce the unfolding forces with every consecutive unfolding event. We utilize a simple mechanistic viscoelastic model to show that two effects are combined within a sequential forced unfolding process: the viscoelastic properties of the growing linker chain lead to a hierarchy of the unfolding events, and force-rate application governs the unfolding kinetics. |
format | Online Article Text |
id | pubmed-7467765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74677652020-09-03 Interplay between Viscoelasticity and Force Rate Affects Sequential Unfolding in Polyproteins Pulled at Constant Velocity Elias-Mordechai, Moran Chetrit, Einat Berkovich, Ronen Macromolecules [Image: see text] Polyproteins are unique constructs, comprised of folded protein domains in tandem and polymeric linkers. These macromolecules perform under biological stresses by modulating their response through partial unfolding and extending. Although these unfolding events are considered independent, a history dependence of forced unfolding within polyproteins was reported. Here we measure the unfolding of single poly(I91) octamers, complemented with Brownian dynamics simulations, displaying increasing hierarchy in unfolding-foces, accompanied by a decrease in the effective stiffness. This counters the existing understanding that relates stiffness with variations in domain size and probe stiffness, which is expected to reduce the unfolding forces with every consecutive unfolding event. We utilize a simple mechanistic viscoelastic model to show that two effects are combined within a sequential forced unfolding process: the viscoelastic properties of the growing linker chain lead to a hierarchy of the unfolding events, and force-rate application governs the unfolding kinetics. American Chemical Society 2020-04-14 2020-04-28 /pmc/articles/PMC7467765/ /pubmed/32905266 http://dx.doi.org/10.1021/acs.macromol.0c00278 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Elias-Mordechai, Moran Chetrit, Einat Berkovich, Ronen Interplay between Viscoelasticity and Force Rate Affects Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title | Interplay between Viscoelasticity and Force Rate Affects
Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title_full | Interplay between Viscoelasticity and Force Rate Affects
Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title_fullStr | Interplay between Viscoelasticity and Force Rate Affects
Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title_full_unstemmed | Interplay between Viscoelasticity and Force Rate Affects
Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title_short | Interplay between Viscoelasticity and Force Rate Affects
Sequential Unfolding in Polyproteins Pulled at Constant Velocity |
title_sort | interplay between viscoelasticity and force rate affects
sequential unfolding in polyproteins pulled at constant velocity |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467765/ https://www.ncbi.nlm.nih.gov/pubmed/32905266 http://dx.doi.org/10.1021/acs.macromol.0c00278 |
work_keys_str_mv | AT eliasmordechaimoran interplaybetweenviscoelasticityandforcerateaffectssequentialunfoldinginpolyproteinspulledatconstantvelocity AT chetriteinat interplaybetweenviscoelasticityandforcerateaffectssequentialunfoldinginpolyproteinspulledatconstantvelocity AT berkovichronen interplaybetweenviscoelasticityandforcerateaffectssequentialunfoldinginpolyproteinspulledatconstantvelocity |