Cargando…
Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network
OBJECTIVES: The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients. METHODS: In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training...
Autores principales: | Shiri, Isaac, Akhavanallaf, Azadeh, Sanaat, Amirhossein, Salimi, Yazdan, Askari, Dariush, Mansouri, Zahra, Shayesteh, Sajad P., Hasanian, Mohammad, Rezaei-Kalantari, Kiara, Salahshour, Ali, Sandoughdaran, Saleh, Abdollahi, Hamid, Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467843/ https://www.ncbi.nlm.nih.gov/pubmed/32879987 http://dx.doi.org/10.1007/s00330-020-07225-6 |
Ejemplares similares
-
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021) -
Deep learning-based fully automated Z-axis coverage range definition from scout scans to eliminate overscanning in chest CT imaging
por: Salimi, Yazdan, et al.
Publicado: (2021) -
Fully automated accurate patient positioning in computed tomography using anterior–posterior localizer images and a deep neural network: a dual-center study
por: Salimi, Yazdan, et al.
Publicado: (2023) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022)