Cargando…
Identifying and quantifying robust risk factors for mortality in critically ill patients with COVID-19 using quantile regression
OBJECTIVE: Many laboratory indicators form a skewed distribution with outliers in critically ill patients with COVID-19, for which robust methods are needed to precisely determine and quantify fatality risk factors. METHOD: A total of 192 critically ill patients (142 were discharged and 50 died in t...
Autores principales: | Linli, Zeqiang, Chen, Yinyin, Tian, Guoliang, Guo, Shuixia, Fei, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467869/ https://www.ncbi.nlm.nih.gov/pubmed/33046291 http://dx.doi.org/10.1016/j.ajem.2020.08.090 |
Ejemplares similares
-
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
Handbook of quantile regression
por: Koenker, Roger, et al.
Publicado: (2017) -
Quantifying uncertainty in brain-predicted age using scalar-on-image quantile regression
por: Palma, Marco, et al.
Publicado: (2020) -
Quantile regression: theory and applications
por: Furno, Marilena, et al.
Publicado: (2018) -
Quantile regression: theory and applications
por: Davino, Cristina, et al.
Publicado: (2013)