Cargando…
Deep learning-based diatom taxonomy on virtual slides
Deep convolutional neural networks are emerging as the state of the art method for supervised classification of images also in the context of taxonomic identification. Different morphologies and imaging technologies applied across organismal groups lead to highly specific image domains, which need c...
Autores principales: | Kloster, Michael, Langenkämper, Daniel, Zurowietz, Martin, Beszteri, Bánk, Nattkemper, Tim W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468105/ https://www.ncbi.nlm.nih.gov/pubmed/32879374 http://dx.doi.org/10.1038/s41598-020-71165-w |
Ejemplares similares
-
Improving deep learning-based segmentation of diatoms in gigapixel-sized virtual slides by object-based tile positioning and object integrity constraint
por: Kloster, Michael, et al.
Publicado: (2023) -
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects
por: Kloster, Michael, et al.
Publicado: (2014) -
MAIA—A machine learning assisted image annotation method for environmental monitoring and exploration
por: Zurowietz, Martin, et al.
Publicado: (2018) -
Quantitative comparison of taxa and taxon concepts in the diatom genus Fragilariopsis: a case study on using slide scanning, multiexpert image annotation, and image analysis in taxonomy(1)
por: Beszteri, Bánk, et al.
Publicado: (2018) -
An Interactive Visualization for Feature Localization in Deep Neural Networks
por: Zurowietz, Martin, et al.
Publicado: (2020)