Cargando…

Simultaneous targeting of mitochondria and monocytes enhances neuroprotection against ischemia–reperfusion injury

Ischemia–reperfusion injury impairs the efficacy of reperfusion therapy after ischemic stroke. Cyclophilin D (CypD)-mediated openings of mitochondrial permeability transition pore (mPTP) and subsequent monocyte-mediated inflammation are considered as major mechanisms of reperfusion injury. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Okahara, Arihide, Koga, Jun-ichiro, Matoba, Tetsuya, Fujiwara, Masaki, Tokutome, Masaki, Ikeda, Gentaro, Nakano, Kaku, Tachibana, Masaki, Ago, Tetsuro, Kitazono, Takanari, Tsutsui, Hiroyuki, Egashira, Kensuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468234/
https://www.ncbi.nlm.nih.gov/pubmed/32879367
http://dx.doi.org/10.1038/s41598-020-71326-x
Descripción
Sumario:Ischemia–reperfusion injury impairs the efficacy of reperfusion therapy after ischemic stroke. Cyclophilin D (CypD)-mediated openings of mitochondrial permeability transition pore (mPTP) and subsequent monocyte-mediated inflammation are considered as major mechanisms of reperfusion injury. However, no medical therapies are currently available. Therefore, we have tested a hypothesis that simultaneous targeting of mPTP and inflammation confers substantial neuroprotection after cerebral ischemia–reperfusion. To address this point, we prepared CypD knockout mice, C–C chemokine receptor 2 (CCR2) knockout mice and CypD/CCR2 double knockout mice. These mice were subjected to 60 min transient cerebral ischemia by occluding middle cerebral arteries. Neurological deficits evaluated 3 days after reperfusion were significantly attenuated in CypD/CCR2 double knockout mice as compared to wild-type mice and other single knockout mice. Then, we have prepared polymeric nanoparticles containing cyclosporine A (CsA-NPs) and pitavastatin (Pitava-NPs), targeting mPTP opening and inflammation, respectively. Simultaneous administration of CsA-NP and Pitava-NP at the time of reperfusion also decreased infarct size and attenuated neurological deficits as compared to control nanoparticles and single administration of CsA-NPs or Pitava-NPs. These results indicate that simultaneous targeting of the mPTP opening and monocyte-mediated inflammation could be a novel strategy for better neurological outcomes in patients with ischemic stroke.