Cargando…

Effects of Pyriproxyfen Exposure on Reproduction and Gene Expressions in Silkworm, Bombyx mori

The silkworm, Bombyx mori Linnaeus, is an important economic insect and a representative model organism of Lepidoptera, which has been widely used in the study of reproduction and development. The development of the silkworm’s reproductive gland is easily affected by many external factors, such as c...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, He-Ying, Zhang, Xiao, Zhao, Guo-Dong, Guo, Hui-Min, Li, Gang, Xu, An-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469178/
https://www.ncbi.nlm.nih.gov/pubmed/32722009
http://dx.doi.org/10.3390/insects11080467
Descripción
Sumario:The silkworm, Bombyx mori Linnaeus, is an important economic insect and a representative model organism of Lepidoptera, which has been widely used in the study of reproduction and development. The development of the silkworm’s reproductive gland is easily affected by many external factors, such as chemical insecticides. After the silkworm larvae were treated with different concentrations of pyriproxyfen, the results showed that the number of eggs and hatching rate of eggs in the silkworm can be reduced by pyriproxyfen, and the concentration effects were displayed. Pyriproxyfen exposure could affect the normal development of the ovary tissue by reducing the number of oocytes and oogonia in the ovaries of silkworm fed with pyriproxyfen. We employed qRT-PCR, to detect the expressions of genes related to ovary development (Vg, Ovo, Otu, Sxl-S and Sxl-L) and hormone regulation (EcR and JHBP2) in silkworm. Our study showed that the transcription levels of Vg, Ovo, Otu, Sxl-S and Sxl-L in the treatment group were lower than those in the control group (6.08%, 61.99%, 83.51%, 99.31% and 71.95%, respectively). The transcription level of ECR was 70.22% for the control group, while that of JHBP2 was upregulated by 3.92-fold. Changes of transcription levels of these genes caused by pyriproxyfen exposure ultimately affect the absorption of nutrients, energy metabolism, ovary development and egg formation of the silkworm, thus leading to reproductive disorders of the silkworm. In general, our study revealed the response of silkworm reproduction to pyriproxyfen exposure and provided a certain reference value for the metabolism of the silkworm to pyriproxyfen.