Cargando…
LDNFSGB: prediction of long non-coding rna and disease association using network feature similarity and gradient boosting
BACKGROUND: A large number of experimental studies show that the mutation and regulation of long non-coding RNAs (lncRNAs) are associated with various human diseases. Accurate prediction of lncRNA-disease associations can provide a new perspective for the diagnosis and treatment of diseases. The mai...
Autores principales: | Zhang, Yuan, Ye, Fei, Xiong, Dapeng, Gao, Xieping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469344/ https://www.ncbi.nlm.nih.gov/pubmed/32883200 http://dx.doi.org/10.1186/s12859-020-03721-0 |
Ejemplares similares
-
Class similarity network for coding and long non-coding RNA classification
por: Zhang, Yu, et al.
Publicado: (2021) -
Clinicopathological and prognostic significance of long non-coding RNA EWSAT1 in human cancers: A review and meta analysis
por: Wen, Jian, et al.
Publicado: (2022) -
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection
por: Adler, Afek Ilay, et al.
Publicado: (2022) -
Multi-semantic feature fusion attention network for binary code similarity detection
por: Li, Bangling, et al.
Publicado: (2023) -
A tutorial and tool for exploring feature similarity gradients with MRI data
por: Bajada, Claude J., et al.
Publicado: (2020)