Cargando…
The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue....
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469612/ https://www.ncbi.nlm.nih.gov/pubmed/32835596 http://dx.doi.org/10.1080/21623945.2020.1807850 |
_version_ | 1783578439675019264 |
---|---|
author | Yang, Xuping Liu, Qinhui Li, Yanping Tang, Qin Wu, Tong Chen, Lei Pu, Shiyun Zhao, Yingnan Zhang, Guorong Huang, Cuiyuan Zhang, Jinhang Zhang, Zijing Huang, Ya Zou, Min Shi, Xiongjie Jiang, Wei Wang, Rui He, Jinhan |
author_facet | Yang, Xuping Liu, Qinhui Li, Yanping Tang, Qin Wu, Tong Chen, Lei Pu, Shiyun Zhao, Yingnan Zhang, Guorong Huang, Cuiyuan Zhang, Jinhang Zhang, Zijing Huang, Ya Zou, Min Shi, Xiongjie Jiang, Wei Wang, Rui He, Jinhan |
author_sort | Yang, Xuping |
collection | PubMed |
description | The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue. In the present study, the pharmacological effects of Cana and the associated mechanism were investigated in adipocytes and mice. Stromal-vascular fractions (SVFs) were isolated from subcutaneous adipose tissue and differentiated into mature adipocytes. Our results show that Cana treatment directly increased cellular energy expenditure of adipocytes by inducing mitochondrial biogenesis independently of SGLT2 inhibition. Along with mitochondrial biogenesis, Cana also increased mitochondrial oxidative phosphorylation, fatty acid oxidation and thermogenesis. Mechanistically, Cana promoted mitochondrial biogenesis and function via an Adenosine monophosphate-activated protein kinase (AMPK) – silent information regulator 1 (Sirt1) – peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) signalling pathway. Consistently, in vivo study demonstrated that Cana increased AMPK phosphorylation and the expression of Sirt1 and Pgc-1α. The present study reveals a new therapeutic function for Cana in regulating energy homoeostasis. Abbreviations: Ucp-1, uncoupling protein 1; cAMP, cyclic adenosine monophosphate; PKA, cAMP-dependent protein kinase A; SGLT, sodium glucose cotransporter; Cana, canagliflozin; T2DM: type 2 diabetes; Veh, vehicle; Pgc-1α, peroxisome proliferator-activated receptor γ coactivator-1α; SVFs, stromal-vascular fractions; FBS, bovine serum; Ad, adenovirus; mtDNA, mitochondrial DNA; COX2, cytochrome oxidase subunit 2; RT-PCR, real-time PCR; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; Prdm16, PR domain zinc finger protein 16; Cidea, cell death inducing DFFA-like effector A; Pgc-1β, peroxisome proliferator-activated receptor γ coactivator-1β; NRF1, nuclear respiratory factor 1; Tfam, mitochondrial transcription factor A; OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; AMPK, Adenosine monophosphate-activated protein kinase; p-AMPK, phosphorylated AMPK; Sirt1, silent information regulator 1; mTOR, mammalian target of rapamycin; WAT, white adipose tissue; Fabp4, fatty acid binding protein 4; Lpl, lipoprotein lipase; Slc5a2, solute carrier family 5 member 2; ERRα, oestrogen related receptor α; Uqcrc2, ubiquinol-cytochrome c reductase core protein 2; Uqcrfs1, ubiquinol-cytochrome c reductase, Rieske iron-sulphur polypeptide 1; Cox4, cytochrome c oxidase subunit 4; Pparα, peroxisome proliferator activated receptor α; NAD(+), nicotinamide adenine dinucleotide; Dio2, iodothyronine deiodinase 2; Tmem26, transmembrane protein 26; Hoxa9, homeobox A9; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; Rot/AA, rotenone/antimycin A; OCR, oxygen consumption rate; Pparγ, peroxisome proliferator activated receptor γ; C/ebp, CCAAT/enhancer binding protein; LKB1, liver kinase B1; AUC, area under the cure; Vd, apparent volume of distribution. |
format | Online Article Text |
id | pubmed-7469612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-74696122020-09-15 The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway Yang, Xuping Liu, Qinhui Li, Yanping Tang, Qin Wu, Tong Chen, Lei Pu, Shiyun Zhao, Yingnan Zhang, Guorong Huang, Cuiyuan Zhang, Jinhang Zhang, Zijing Huang, Ya Zou, Min Shi, Xiongjie Jiang, Wei Wang, Rui He, Jinhan Adipocyte Research Article The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue. In the present study, the pharmacological effects of Cana and the associated mechanism were investigated in adipocytes and mice. Stromal-vascular fractions (SVFs) were isolated from subcutaneous adipose tissue and differentiated into mature adipocytes. Our results show that Cana treatment directly increased cellular energy expenditure of adipocytes by inducing mitochondrial biogenesis independently of SGLT2 inhibition. Along with mitochondrial biogenesis, Cana also increased mitochondrial oxidative phosphorylation, fatty acid oxidation and thermogenesis. Mechanistically, Cana promoted mitochondrial biogenesis and function via an Adenosine monophosphate-activated protein kinase (AMPK) – silent information regulator 1 (Sirt1) – peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) signalling pathway. Consistently, in vivo study demonstrated that Cana increased AMPK phosphorylation and the expression of Sirt1 and Pgc-1α. The present study reveals a new therapeutic function for Cana in regulating energy homoeostasis. Abbreviations: Ucp-1, uncoupling protein 1; cAMP, cyclic adenosine monophosphate; PKA, cAMP-dependent protein kinase A; SGLT, sodium glucose cotransporter; Cana, canagliflozin; T2DM: type 2 diabetes; Veh, vehicle; Pgc-1α, peroxisome proliferator-activated receptor γ coactivator-1α; SVFs, stromal-vascular fractions; FBS, bovine serum; Ad, adenovirus; mtDNA, mitochondrial DNA; COX2, cytochrome oxidase subunit 2; RT-PCR, real-time PCR; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; Prdm16, PR domain zinc finger protein 16; Cidea, cell death inducing DFFA-like effector A; Pgc-1β, peroxisome proliferator-activated receptor γ coactivator-1β; NRF1, nuclear respiratory factor 1; Tfam, mitochondrial transcription factor A; OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; AMPK, Adenosine monophosphate-activated protein kinase; p-AMPK, phosphorylated AMPK; Sirt1, silent information regulator 1; mTOR, mammalian target of rapamycin; WAT, white adipose tissue; Fabp4, fatty acid binding protein 4; Lpl, lipoprotein lipase; Slc5a2, solute carrier family 5 member 2; ERRα, oestrogen related receptor α; Uqcrc2, ubiquinol-cytochrome c reductase core protein 2; Uqcrfs1, ubiquinol-cytochrome c reductase, Rieske iron-sulphur polypeptide 1; Cox4, cytochrome c oxidase subunit 4; Pparα, peroxisome proliferator activated receptor α; NAD(+), nicotinamide adenine dinucleotide; Dio2, iodothyronine deiodinase 2; Tmem26, transmembrane protein 26; Hoxa9, homeobox A9; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; Rot/AA, rotenone/antimycin A; OCR, oxygen consumption rate; Pparγ, peroxisome proliferator activated receptor γ; C/ebp, CCAAT/enhancer binding protein; LKB1, liver kinase B1; AUC, area under the cure; Vd, apparent volume of distribution. Taylor & Francis 2020-08-23 /pmc/articles/PMC7469612/ /pubmed/32835596 http://dx.doi.org/10.1080/21623945.2020.1807850 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Xuping Liu, Qinhui Li, Yanping Tang, Qin Wu, Tong Chen, Lei Pu, Shiyun Zhao, Yingnan Zhang, Guorong Huang, Cuiyuan Zhang, Jinhang Zhang, Zijing Huang, Ya Zou, Min Shi, Xiongjie Jiang, Wei Wang, Rui He, Jinhan The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title | The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title_full | The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title_fullStr | The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title_full_unstemmed | The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title_short | The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway |
title_sort | diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the ampk-sirt1-pgc-1α signalling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469612/ https://www.ncbi.nlm.nih.gov/pubmed/32835596 http://dx.doi.org/10.1080/21623945.2020.1807850 |
work_keys_str_mv | AT yangxuping thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT liuqinhui thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT liyanping thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT tangqin thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT wutong thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT chenlei thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT pushiyun thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhaoyingnan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangguorong thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT huangcuiyuan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangjinhang thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangzijing thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT huangya thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zoumin thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT shixiongjie thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT jiangwei thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT wangrui thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT hejinhan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT yangxuping diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT liuqinhui diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT liyanping diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT tangqin diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT wutong diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT chenlei diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT pushiyun diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhaoyingnan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangguorong diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT huangcuiyuan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangjinhang diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zhangzijing diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT huangya diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT zoumin diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT shixiongjie diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT jiangwei diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT wangrui diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway AT hejinhan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway |