Cargando…

The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway

The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue....

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xuping, Liu, Qinhui, Li, Yanping, Tang, Qin, Wu, Tong, Chen, Lei, Pu, Shiyun, Zhao, Yingnan, Zhang, Guorong, Huang, Cuiyuan, Zhang, Jinhang, Zhang, Zijing, Huang, Ya, Zou, Min, Shi, Xiongjie, Jiang, Wei, Wang, Rui, He, Jinhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469612/
https://www.ncbi.nlm.nih.gov/pubmed/32835596
http://dx.doi.org/10.1080/21623945.2020.1807850
_version_ 1783578439675019264
author Yang, Xuping
Liu, Qinhui
Li, Yanping
Tang, Qin
Wu, Tong
Chen, Lei
Pu, Shiyun
Zhao, Yingnan
Zhang, Guorong
Huang, Cuiyuan
Zhang, Jinhang
Zhang, Zijing
Huang, Ya
Zou, Min
Shi, Xiongjie
Jiang, Wei
Wang, Rui
He, Jinhan
author_facet Yang, Xuping
Liu, Qinhui
Li, Yanping
Tang, Qin
Wu, Tong
Chen, Lei
Pu, Shiyun
Zhao, Yingnan
Zhang, Guorong
Huang, Cuiyuan
Zhang, Jinhang
Zhang, Zijing
Huang, Ya
Zou, Min
Shi, Xiongjie
Jiang, Wei
Wang, Rui
He, Jinhan
author_sort Yang, Xuping
collection PubMed
description The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue. In the present study, the pharmacological effects of Cana and the associated mechanism were investigated in adipocytes and mice. Stromal-vascular fractions (SVFs) were isolated from subcutaneous adipose tissue and differentiated into mature adipocytes. Our results show that Cana treatment directly increased cellular energy expenditure of adipocytes by inducing mitochondrial biogenesis independently of SGLT2 inhibition. Along with mitochondrial biogenesis, Cana also increased mitochondrial oxidative phosphorylation, fatty acid oxidation and thermogenesis. Mechanistically, Cana promoted mitochondrial biogenesis and function via an Adenosine monophosphate-activated protein kinase (AMPK) – silent information regulator 1 (Sirt1) – peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) signalling pathway. Consistently, in vivo study demonstrated that Cana increased AMPK phosphorylation and the expression of Sirt1 and Pgc-1α. The present study reveals a new therapeutic function for Cana in regulating energy homoeostasis. Abbreviations: Ucp-1, uncoupling protein 1; cAMP, cyclic adenosine monophosphate; PKA, cAMP-dependent protein kinase A; SGLT, sodium glucose cotransporter; Cana, canagliflozin; T2DM: type 2 diabetes; Veh, vehicle; Pgc-1α, peroxisome proliferator-activated receptor γ coactivator-1α; SVFs, stromal-vascular fractions; FBS, bovine serum; Ad, adenovirus; mtDNA, mitochondrial DNA; COX2, cytochrome oxidase subunit 2; RT-PCR, real-time PCR; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; Prdm16, PR domain zinc finger protein 16; Cidea, cell death inducing DFFA-like effector A; Pgc-1β, peroxisome proliferator-activated receptor γ coactivator-1β; NRF1, nuclear respiratory factor 1; Tfam, mitochondrial transcription factor A; OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; AMPK, Adenosine monophosphate-activated protein kinase; p-AMPK, phosphorylated AMPK; Sirt1, silent information regulator 1; mTOR, mammalian target of rapamycin; WAT, white adipose tissue; Fabp4, fatty acid binding protein 4; Lpl, lipoprotein lipase; Slc5a2, solute carrier family 5 member 2; ERRα, oestrogen related receptor α; Uqcrc2, ubiquinol-cytochrome c reductase core protein 2; Uqcrfs1, ubiquinol-cytochrome c reductase, Rieske iron-sulphur polypeptide 1; Cox4, cytochrome c oxidase subunit 4; Pparα, peroxisome proliferator activated receptor α; NAD(+), nicotinamide adenine dinucleotide; Dio2, iodothyronine deiodinase 2; Tmem26, transmembrane protein 26; Hoxa9, homeobox A9; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; Rot/AA, rotenone/antimycin A; OCR, oxygen consumption rate; Pparγ, peroxisome proliferator activated receptor γ; C/ebp, CCAAT/enhancer binding protein; LKB1, liver kinase B1; AUC, area under the cure; Vd, apparent volume of distribution.
format Online
Article
Text
id pubmed-7469612
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-74696122020-09-15 The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway Yang, Xuping Liu, Qinhui Li, Yanping Tang, Qin Wu, Tong Chen, Lei Pu, Shiyun Zhao, Yingnan Zhang, Guorong Huang, Cuiyuan Zhang, Jinhang Zhang, Zijing Huang, Ya Zou, Min Shi, Xiongjie Jiang, Wei Wang, Rui He, Jinhan Adipocyte Research Article The diabetes medication canagliflozin (Cana) is a sodium glucose cotransporter 2 (SGLT2) inhibitor acting by increasing urinary glucose excretion and thus reducing hyperglycaemia. Cana treatment also reduces body weight. However, it remains unclear whether Cana could directly work on adipose tissue. In the present study, the pharmacological effects of Cana and the associated mechanism were investigated in adipocytes and mice. Stromal-vascular fractions (SVFs) were isolated from subcutaneous adipose tissue and differentiated into mature adipocytes. Our results show that Cana treatment directly increased cellular energy expenditure of adipocytes by inducing mitochondrial biogenesis independently of SGLT2 inhibition. Along with mitochondrial biogenesis, Cana also increased mitochondrial oxidative phosphorylation, fatty acid oxidation and thermogenesis. Mechanistically, Cana promoted mitochondrial biogenesis and function via an Adenosine monophosphate-activated protein kinase (AMPK) – silent information regulator 1 (Sirt1) – peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) signalling pathway. Consistently, in vivo study demonstrated that Cana increased AMPK phosphorylation and the expression of Sirt1 and Pgc-1α. The present study reveals a new therapeutic function for Cana in regulating energy homoeostasis. Abbreviations: Ucp-1, uncoupling protein 1; cAMP, cyclic adenosine monophosphate; PKA, cAMP-dependent protein kinase A; SGLT, sodium glucose cotransporter; Cana, canagliflozin; T2DM: type 2 diabetes; Veh, vehicle; Pgc-1α, peroxisome proliferator-activated receptor γ coactivator-1α; SVFs, stromal-vascular fractions; FBS, bovine serum; Ad, adenovirus; mtDNA, mitochondrial DNA; COX2, cytochrome oxidase subunit 2; RT-PCR, real-time PCR; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; Prdm16, PR domain zinc finger protein 16; Cidea, cell death inducing DFFA-like effector A; Pgc-1β, peroxisome proliferator-activated receptor γ coactivator-1β; NRF1, nuclear respiratory factor 1; Tfam, mitochondrial transcription factor A; OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; AMPK, Adenosine monophosphate-activated protein kinase; p-AMPK, phosphorylated AMPK; Sirt1, silent information regulator 1; mTOR, mammalian target of rapamycin; WAT, white adipose tissue; Fabp4, fatty acid binding protein 4; Lpl, lipoprotein lipase; Slc5a2, solute carrier family 5 member 2; ERRα, oestrogen related receptor α; Uqcrc2, ubiquinol-cytochrome c reductase core protein 2; Uqcrfs1, ubiquinol-cytochrome c reductase, Rieske iron-sulphur polypeptide 1; Cox4, cytochrome c oxidase subunit 4; Pparα, peroxisome proliferator activated receptor α; NAD(+), nicotinamide adenine dinucleotide; Dio2, iodothyronine deiodinase 2; Tmem26, transmembrane protein 26; Hoxa9, homeobox A9; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; Rot/AA, rotenone/antimycin A; OCR, oxygen consumption rate; Pparγ, peroxisome proliferator activated receptor γ; C/ebp, CCAAT/enhancer binding protein; LKB1, liver kinase B1; AUC, area under the cure; Vd, apparent volume of distribution. Taylor & Francis 2020-08-23 /pmc/articles/PMC7469612/ /pubmed/32835596 http://dx.doi.org/10.1080/21623945.2020.1807850 Text en © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yang, Xuping
Liu, Qinhui
Li, Yanping
Tang, Qin
Wu, Tong
Chen, Lei
Pu, Shiyun
Zhao, Yingnan
Zhang, Guorong
Huang, Cuiyuan
Zhang, Jinhang
Zhang, Zijing
Huang, Ya
Zou, Min
Shi, Xiongjie
Jiang, Wei
Wang, Rui
He, Jinhan
The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title_full The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title_fullStr The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title_full_unstemmed The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title_short The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway
title_sort diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the ampk-sirt1-pgc-1α signalling pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469612/
https://www.ncbi.nlm.nih.gov/pubmed/32835596
http://dx.doi.org/10.1080/21623945.2020.1807850
work_keys_str_mv AT yangxuping thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT liuqinhui thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT liyanping thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT tangqin thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT wutong thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT chenlei thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT pushiyun thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhaoyingnan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangguorong thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT huangcuiyuan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangjinhang thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangzijing thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT huangya thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zoumin thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT shixiongjie thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT jiangwei thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT wangrui thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT hejinhan thediabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT yangxuping diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT liuqinhui diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT liyanping diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT tangqin diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT wutong diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT chenlei diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT pushiyun diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhaoyingnan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangguorong diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT huangcuiyuan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangjinhang diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zhangzijing diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT huangya diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT zoumin diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT shixiongjie diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT jiangwei diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT wangrui diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway
AT hejinhan diabetesmedicationcanagliflozinpromotesmitochondrialremodellingofadipocyteviatheampksirt1pgc1asignallingpathway