Cargando…

On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients

[Image: see text] Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol–gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients b...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashraf, Kayesh M., Roy, Kallol, Higgins, Daniel A., Collinson, Maryanne M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469646/
https://www.ncbi.nlm.nih.gov/pubmed/32905528
http://dx.doi.org/10.1021/acsomega.0c03068
_version_ 1783578443054579712
author Ashraf, Kayesh M.
Roy, Kallol
Higgins, Daniel A.
Collinson, Maryanne M.
author_facet Ashraf, Kayesh M.
Roy, Kallol
Higgins, Daniel A.
Collinson, Maryanne M.
author_sort Ashraf, Kayesh M.
collection PubMed
description [Image: see text] Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol–gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH(3)(+), SO(3)(–)), the samples were immersed into H(2)O(2). The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance.
format Online
Article
Text
id pubmed-7469646
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-74696462020-09-04 On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients Ashraf, Kayesh M. Roy, Kallol Higgins, Daniel A. Collinson, Maryanne M. ACS Omega [Image: see text] Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol–gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH(3)(+), SO(3)(–)), the samples were immersed into H(2)O(2). The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance. American Chemical Society 2020-08-21 /pmc/articles/PMC7469646/ /pubmed/32905528 http://dx.doi.org/10.1021/acsomega.0c03068 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Ashraf, Kayesh M.
Roy, Kallol
Higgins, Daniel A.
Collinson, Maryanne M.
On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title_full On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title_fullStr On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title_full_unstemmed On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title_short On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients
title_sort on the importance of silane infusion order on the microscopic and macroscopic properties of multifunctional charge gradients
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469646/
https://www.ncbi.nlm.nih.gov/pubmed/32905528
http://dx.doi.org/10.1021/acsomega.0c03068
work_keys_str_mv AT ashrafkayeshm ontheimportanceofsilaneinfusionorderonthemicroscopicandmacroscopicpropertiesofmultifunctionalchargegradients
AT roykallol ontheimportanceofsilaneinfusionorderonthemicroscopicandmacroscopicpropertiesofmultifunctionalchargegradients
AT higginsdaniela ontheimportanceofsilaneinfusionorderonthemicroscopicandmacroscopicpropertiesofmultifunctionalchargegradients
AT collinsonmaryannem ontheimportanceofsilaneinfusionorderonthemicroscopicandmacroscopicpropertiesofmultifunctionalchargegradients