Cargando…
Ginsenoside Rb2 improves insulin resistance by inhibiting adipocyte pyroptosis
Pyroptosis plays a critical role in the development of obesity-associated inflammation and insulin resistantance (IR). Ginsenoside Rb2 (Rb2), the main component of ginsenosides has drawn appreciable interest in the context of glucose metabolism. In the present study, we investigated Rb2-mediated pro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469678/ https://www.ncbi.nlm.nih.gov/pubmed/32580621 http://dx.doi.org/10.1080/21623945.2020.1778826 |
Sumario: | Pyroptosis plays a critical role in the development of obesity-associated inflammation and insulin resistantance (IR). Ginsenoside Rb2 (Rb2), the main component of ginsenosides has drawn appreciable interest in the context of glucose metabolism. In the present study, we investigated Rb2-mediated protection against obesity-induced IR and the related mechanisms. Rb2 could significantly reduce high-fat diet (HFD)-induced body weight changes, fat accumulation and IR. In addition, Rb2 treatment inhibited pyroptosis-related genes and proteins, such as caspase-1, ASC, NLRP3, IL-1β and GSDMD in HFD-fed mice. The above results were recapitulated in 3T3-L1 adipocytes and demonstrated that Rb2 improved TNF-α induced IR and pyroptosis in 3T3-L1 adipocytes. Furthermore, Rb2 reduced the phosphorylation levels of p65 and IκBα both in vitro and in vivo. The present study showed that Rb2, which could serve as a promising agent for the treatment of IR and obesity, ameliorated IR by inhibiting pyroptosis in adipocytes in vivo and in vitro through the NF-κB pathway. |
---|