Cargando…
Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity
OBJECTIVE: Cisplatin (CDDP) toxicity is a dose-limiting clinical problem in clinical practice, mainly because of nephrotoxicity or ototoxicity. However, the mechanism of CDDP-induced cardiotoxicity is poorly understood. Acetyl-l-carnitine (ALCAR) is an antioxidant agent with protective effects again...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469739/ https://www.ncbi.nlm.nih.gov/pubmed/32865065 http://dx.doi.org/10.1177/0300060520951393 |
Sumario: | OBJECTIVE: Cisplatin (CDDP) toxicity is a dose-limiting clinical problem in clinical practice, mainly because of nephrotoxicity or ototoxicity. However, the mechanism of CDDP-induced cardiotoxicity is poorly understood. Acetyl-l-carnitine (ALCAR) is an antioxidant agent with protective effects against the side effects of various chemotherapeutics. CDDP-induced cardiotoxicity and the protective role of ALCAR were evaluated in this study. METHODS: Morphological changes were evaluated in hematoxylin and eosin-stained sections, and immunohistochemistry for caspase-3, superoxide dismutase-2 (SOD-2), inducible nitrite oxide synthase (iNOS), cyclooxygenase-2, and Bcl-2 was performed using the hearts of athymic nude mice carrying xenograft neuroblastoma tumors. Mice were randomized (six/group) to the control, CDDP (16 mg/kg), and ALCAR (200 mg/kg)+CDDP (16 mg/kg) groups. Results were analyzed using nonparametric tests. RESULTS: No difference was observed in the rates of cardiac necrosis, dilated/congested blood vessels, hemorrhage, polymorphonuclear leukocyte infiltration, edema, and pyknotic nuclei among the groups. SOD-2 expression was increased in the CDDP group but not in the ALCAR+CDDP group. iNOS, Bcl-2, and caspase-3 levels were not significantly different among the groups. CONCLUSIONS: ALCAR might be a candidate protective agent for CDDP-induced cardiotoxicity. SOD-2, as a member of the oxidant system, should be evaluated in further studies as a biomarker of cardiotoxicity. |
---|